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Abstract: The generalized Born model (GB) provides a reasonably accurate and computationally
efficient way to compute the electrostatic component (∆Gel) of the solvation free energy. In this
work, we have developed a method to compute effective Born radii, which is intended to address
the known secondary structure bias of the GB model reported earlier (Roe et al. J. Phys. Chem.
B, 2007, 111, 1846-1857). Our analytical approach, termed AR6, is based on the |r|-6 (R6)
integration over an approximation to molecular volume. Within the approach, several compu-
tationally efficient corrections to the pairwise VDW-volume integration are combined to closely
approximate the true molecular volume in the vicinity of each atom. The accuracy of the AR6
model in predicting relative ∆Gel is tested on four conformational states of alanine decapeptide.
Changes in ∆Gel estimated by AR6 between various pairs of conformational states have the
same RMS error relative to the explicit solvent, as do the corresponding numerical PB values;
at the same time, the RMS error of the proposed model is 2 times lower than that of the popular
GB_OBC model from the AMBER package. Tests against the PB treatment on 22 biomolecular
structures including proteins and DNA show that the relative error of ∆Gel is 0.58%; the RMS
error of ∆Gel computed by AR6 is 3 times lower than the corresponding value for GB_OBC.
However, the computational efficiencies of the AR6 and GB_OBC models are comparable. A
variant of the R6 model, NSR6, based on numerically exact integration over triangulated
molecular surface is tested on a “challenge” set of small drug-like molecules (Nicholls et al.
J. Med. Chem. 2008, 51, 769-779). When augmented with cavity and VDW terms to account
for the nonpolar part of solvation energy, the model with only one free parameter is capable of
predicting the total solvation free energy to within 1.73 kcal/mol RMS error relative to experimental
data. Within the NSR6 formulation, computation of the nonpolar contribution is particularly efficient
because its VDW part depends on the same |r|-6 integrals.

1. Introduction

An accurate description of solvent is essential for modeling
and simulation of biological macromolecules. Currently, the

most rigorous procedure for modeling the effect of aqueous
solvent is to explicitly model every water molecule sur-
rounding the macromolecule. For many applications though,
this method is computationally too intense. Implicit solvent
models, in which solvent molecules are represented by a
continuum function, have become a popular alternative to
explicit solvent methods, as they are more computationally
efficient.1-7 Within the framework of implicit solvent
models, macromolecules are treated as a low dielectric
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medium (εin), surrounded by a high dielectric medium (εout).
The effect of the solvent is represented by the solvation free
energy: ∆Gsolv. The solvation free energy is typically divided
into polar (∆Gel) and nonpolar (∆Gnonpol) terms. In this work,
we will focus on the calculation of the polar part of the
solvation free energy.

Within the linear response continuum implicit solvent
framework, solving the Poisson-Boltzmann equation (PB)
is theoretically themost rigorouswaytocompute∆Gel.1-3,6,8-10

However, the PB model may become quite time-consuming,
especially if applied to a large set of conformations of a
macromolecule, or if it is incorporated into molecular
dynamics (MD) simulations where its practical implementa-
tion faces several other challenges. The generalized Born
model (GB) has become popular as an alternative to the PB
model for the computation of ∆Gel,11-34 especially in MD.

The GB model approximates ∆Gel using the following
formula:

where rij is the distance between atoms i and j, qi is the partial
charge of atom i, Ri is the so-called effectiVe Born radius of
atom i, and the most widely used functional form12 of f GB

is f GB ) [rij
2 + RiRj exp(-rij

2/4RiRj)]0.5, although other similar
expressions have been tried.18,35

Recently, it has been shown that eq 1 produces a
systematic error (with respect to PB results) when applied
to systems with finite values of εin and εout.36 Sigalov et al.37

have proposed a modified GB model (ALPB) that eliminates
this systematic error while keeping the computational ef-
ficiency of Still’s original equation:

where � ) εin/εout, R ) 0.571412, and A is the electrostatic
size of the molecule, which is essentially the overall size of
the structure, that can be computed analytically.37 The ALPB
model is currently implemented in AMBER,38 and it will
be used throughout this work to compute ∆Gel.

Much of the efforts of recent studies aimed at improving
the accuracy of the GB model focused on the computation
of the effective Born radii Ri, because it is the computation
of Ri that, to a large extent, determines the accuracy and
efficiency of the entire GB model. One procedure to compute
Ri, the so-called “perfect” effective Born radii, is to derive
them directly from the self-energies computed with the PB
model. It was shown that if the “perfect” effective Born radii
are used in eq 1, the GB ∆Gel are in close agreement with
those of the PB.35 The computationally expensive “perfect”
effective Born radii are commonly used for benchmarking
and testing different GB “flavors”sapproximations that
compute Ri.

Many existing practical GB “flavors” are based on the so-
called “Coulomb field approximation” (CFA) in which the
effective Born radius of atom i is computed by

where Fi is the intrinsic radius of atom i and the integration
is over the volume inside the molecule (solute) but outside
the atom i. ri is the position of atom i with respect to some
fixed frame. Among the methods based on CFA, the
GB_OBC32 flavor, available in the AMBER package, has
become quite popular, especially in molecular dynamics
simulations. This is due to a reasonable compromise between
accuracy and speed offered by GB_OBC. Nevertheless,
recent comparisons between implicit and explicit models
applied to a deca-alanine (Ala10) molecule have shown that
the GB_OBC method (and other GB models tested in ref
39) has a clear bias in the free energies of solvationshence
in the relative populationsof four different conformational
states of Ala10; please refer to ref 39 for details. At the same
time, ∆Gel values computed with the numerical PB model
were in considerably closer agreement with the explicit
solvent results, suggesting that the GB accuracy can still be
improved by achieving a closer match with the underlying
PB model.

A different expression to compute the effective Born radii
(R6 radii), which will be called here “R6 integration”, was
proposed by Svrcek-Seiler40 and independently by Grycuk41

as an alternative to the CFA:

where in the first expression the integral (ext) is taken over
the region outside the molecule. In the second integral, the
origin is moved to the center of atom i. Unlike the CFA
radii in eq 3, the “R6 radii” are exact for any location of a
charged atom within a perfect spherical solute in the εout/εin

. 1 limit. Recently, Mongan et al.42 have shown that when
the “R6 radii” are computed by essentially exact numerical
integration of eq 4, the resulting effective radii and ∆Gel are
in very close agreement with the PB reference for realistic
biomolecular shapes. Thus, the use of “R6 radii” in eq 1 or
2 can potentially eliminate some of the deficiencies of the
methods based on CFA. Although the R6 radii potentially
offer advantages over the CFA-based methods, analytical
methods that compute the “R6” effective Born radii over a
physically realistic molecular (Lee-Richards43) volume do
not yet exist to the best of our knowledge. Analytical,
differentiable expressions for the computation of effective
Born radii are preferred to their numerical counterparts, as
the former are easily extended to calculate solvation forces
needed by MD simulations and are often more computa-
tionally efficient.

Recently, Tjong and Zhou44 and Labute45 have reported
analytical methods to compute “R6 radii” in which eq 4 is
integrated over the van der Waals (VDW) volume of the
solute. These are important steps in the development of the
“R6” flavor. However, the use of VDW volume creates
multiple interstitial regions of unphysical high dielectric
pockets that are smaller than the water molecule. In contrast,

∆Gel ≈ ∆GGB ) -1
2 ∑

ij

qiqj

fGB(rij, Ri, Rj)
( 1
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- 1
εout

) (1)
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1 + �R ∑

ij

qiqj( 1

fGB
+ R�

A ) (2)

Ri
-1 ) Fi

-1 - 1
4π ∫|r-ri|>Fi

solute
|r - ri|

-4 dV (3)

Ri
-1 ) ( 3

4π ∫ext

dV

|r - ri|
6)1/3

)

(Fi
-3 - 3

4π ∫r>Fi

solute
|r|-6 dV)1/3

) (Fi
-3 - Ii

tot)1/3 (4)

3614 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Aguilar et al.



PB calculations generally use the Lee-Richards molecular
surface as a dielectric boundary, defined by rolling a solvent
sphere over the surface of the molecule. This definition was
shown to produce consistently better agreement with the
explicit solvent than the VDW based one.46,47 This point
will be visited later in this work, using deca-alanine (Ala10)
as an example.

The GBMV2 (generalized Born using molecular volume)
model developed by Lee et al.48 is perhaps the best example
of a GB flavor in which the effective radii are obtained
through integration over a very close approximation of the
Lee-Richard molecular volume. The model has been one
of the most successful GB flavors in the ability to reproduce
the “perfect” effective Born radii and total solvation free
energies of proteins. Nonetheless, GBMV2 is substantially
more computationally expensive than comparable VDW-like
GB models such as GBSW49 in CHARMM or AMBER GB
variants.50 The relative computational expense of the GB-
MV2 model becomes even more noticeable if one also factors
in the relative speed of conformational sampling. Here, GB
flavors based on “smooth” molecular volume may lead up
to several orders of magnitude of speedup in the conforma-
tional search.51 Finally, methods based on a sharp molecular
surface definition such as GBMV2 can produce unstable or
infinity forces and lead to energy conservation problems
when used in MD simulations52

In this work, we have developed a new analytical method
to compute the effective Born radii based on the R6
integration. Although the method starts with a computation-
ally efficient pairwise approximation over the VDW volume,
it includes several molecular volume corrections terms
designed to approximate the “true” molecular volume in the
vicinity of the atom in question, thus improving the accuracy
of the calculations but at the same time avoiding problems
associated with the use of a sharp Lee-Richards molecular
surface. We show that the proposed method keeps the
computational efficiency and stability of the previous GB
models implemented in AMBER, such as GB_OBC.

2. Theory

2.1. Numerically Exact Computation of the R6
Radii: NSR6. The inverse of the R6 effective Born radius
of atom i can be computed numerically using the surface
formulation outlined in Mongan et al.42 Within this formula-
tion, Ri is calculated by the following equation:

which according to the Gauss-Ostrogradski theorem, is
equivalent to eq 4. Here, ∂V represents the molecular surface
of the molecule, and dS is the infinitesimal surface vector.
After a triangulation of the surface, Ri is approximated by

where the summation is performed over the surface triangles.
For each surface triangle k, ck represents the position of its

center, Sk its area, and nk is a unit vector orthogonal to the
triangle k pointing toward the inside of the solute.

In this work, the surface triangulation is carried out over
the Lee-Richards molecular surface, which is computed and
triangulated by using the MSMS package,53 see the Meth-
odological Details section for details. Since this procedure,
which will be called “numerical surface R6 integration” or
“NSR6”, gives a numerically exact value of Ri, it will be
subsequently used for accuracy benchmarking. Computa-
tionally, NSR6 is still much faster than the brute force
numerical integration42 over the molecular volume in eq 4;
the reason for the relative inefficiency of the numerical
volume-based approach in the context of the R6 is mentioned
below.

2.2. Approximate Analytical Computation of the R6
Radii: AR6. In this section, we propose an analytic approach
to approximate the R6 radii on the basis of integration of eq
4 over an approximation of the true molecular volume. A
reliable and useful model for computing effective Born radii
should strive for a balance between being reasonably
accurate, computationally efficient, and capable of avoiding
the problems of sharp molecular boundary definitions. In
order to fulfill all of these requirements, we have designed
a methodology that consists of several components which
will be described in the following subsections.

2.2.1. OVerall Approach. In order to analytically compute
R6 radii (eq 4), we propose an approach based on the
integration of several geometrical approximations aimed to
effectively represent different regions of the true molecular
volume. It is important to note that due to the sixth power
in eq 4, the R6 approach is very sensitive to inaccuracies in
the immediate vicinity of the atom in question. For this
reason, our approximation to the R6 integral over molecular
volume was designed to deliver maximum accuracy in the
region closest to the focus atom. First, for every atom i of
the molecule, we separate a predefined small group of
covalently linked atoms, including atom i, over which the
R6 integration is precomputed numerically. This group of
atoms will be referred to as the “chunk” of atom i. The
second approximation consists of the R6 integration over
“neck” regions defined as solvent-inaccessible spaces be-
tween atom i and nearby atoms not belonging to the “chunk”
of atom i. The integration over the “necks” is approximated
by an empirical and simple pairwise function, following the
same strategy described in Mongan et al.54 in which “necks”
were originally introduced in the context of |r|-4 integrals.
Finally, atoms outside the “chunk” region (arguably the
region where eq 4 is least sensitive to inaccuracies) are
treated very efficiently as VDW spheres whose contribution
to the total R6 integration are analytically derived. Thus, the
molecular volume that surrounds atom i is approximated by
the union of three distinct regions (Figure 1): (1) the
essentially exact molecular volume of the “chunk” of atom
i, (2) the “neck” regions between atom i and its nearby atoms,
which accounts albeit approximately for the interstitial low
dielectric regions present in the true molecular volume, (3)
the atomic VDW volume, excluding atoms inside the chunk
of atom i. The second volume integral in eq 4 is ap-
proximated by:

Ri
-1 ) (- 1

4π I∂V

r - ri

|r - ri|
6
· dS)1/3

(5)

Ri
-1 ≈ (- 1

4π ∑
k

(ck - ri) · n̂kSk

|ck - ri|
6 )1/3

(6)
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where Ii
vdw represents the R6 integration over the van der

Waals volume outside the “chunk” of atom i, Ii
neck represents

the R6 integration over the “neck” regions (see ref 54 for
details), and Ii

chunk is the R6 integration over the molecular
volume of the “chunk”. In Figure 1, the regions of integration
of Ii

vdw, Ii
neck, and Ii

chunk are represented by light gray, blue,
and red colors, respectively.

The above approximation will overcount overlapping
regions between necks and atoms outside the “chunks”.
Therefore, the contribution of Ii

vdw and Ii
neck are reduced in

an appropriate manner; this procedure introduces two adjust-
ing parameters, Svdw and Sneck, in the overall procedure. One
additional integer parameter, “chunk depth”, is used to
control the sizes of the “chunk” region.

The previous approach provides good results for small
molecules of at most a couple hundred atoms. In the case of
large structures though, the methodology described above
produces a systematic underestimation of the volume of
integration, because the model does not account for the
interstitial space between atoms far from the vicinity of atom
i, seen as yellow space in Figure 1. To address this
underestimation, we use an additional volume correction
which requires the use of two additional parameters.

2.2.2. Integration oVer Van der Waals Volume: Ii
Vdw. Here,

we compute the Ii
vdw integral in eq 7 over the individual

VDW atomic spheres that make up the molecule; the |r|-6

integral contribution of the VDW sphere of atom j to the
effective Born radius of atom i was analytically calculated
previously.44,55 Let Fi and Fj be the VDW radii of atoms i
and j, respectively, and let rij be the distance between their
centers. Then, the contribution of atom j to Ii

vdw is described
by the following function F6, which is divided into four cases
according to the mutual position of both atoms:
Case I. There is no overlap between atoms i and j: rij g
Fi + Fj

Case II. Atoms i and j overlap: (rij > |Fi - Fj|)∧(rij < Fi + Fj)

Case III. Atom j “swallows” i: (Fi < Fj)∧(rij e Fj - Fi)

Case IV. Atom i “swallows” j: (Fj < Fi)∧(rij e Fi - Fj)

It is worth noting that cases III and IV never occur in
biological macromolecules; we list them here for the sake
of completeness. In practical implementations, e.g., in
AMBER, the VDW radius of atom j is multiplied by a scaling
factor Svdw

j < 1, to correct for overcounting of the volume
due to possible overlaps between VDW spheres of neighbor-
ing atoms. Then, the total contribution of VDW spheres is

where the summation is performed over all of the atoms of
the molecule not included in the “chunk” of atom i.
Compared to the methods currently implemented in AMBER,
we use a simplified version of the rescaling, in which Svdw

j

) Svdw is constant for all atoms of the molecule (we have
found that Svdw ) 0.6211 gives the best results, see below).

2.2.3. Integration oVer Neck Regions: Ii
neck. Here, we

consider a correction term which accounts for the integration
of |r|-6 over the “neck” space between pairs of atoms
(represented by their VDW spheres). This correction term
was first introduced by Mongan et al.54 in the context of the
CFA; here, we extend it to the computation of the R6 radii.
The “neck” region between atoms i and j, represented by
the blue region in Figure 2, is completely determined by their
VDW radii Fi and Fj, the distance rij between them, and the
water probe radius Fw. Moreover, the “neck” exists only if
the distance between atoms i and j is less than Fi + Fj +
2Fw. To approximate the integral of |r|-6 over the “neck”
region, we use the following analytical and empirical
function:

for interatomic distances (rij) less than Fi + Fj + 2Fw and
greater than Bij. Otherwise, neck_integral(rij,Fi,Fj) is set to
zero. Thus, the actual computation is performed only for
those atoms that are within the above distance from the atom
in question. The corresponding computational complexity is
thus O(N), in contrast to the computation of the VDW
contribution that scales as O(N2), where N is the total number

Figure 1. Illustration of the three regions of integration in eq
7 that are combined to approximate the molecular volume:
VDW volume (light gray spheres), neck regions (dark blue),
and “chunk” molecule (red). The open sphere represents atom
i, and the dashed lines represent covalent bonds used to
define which atoms belong to the chunk molecule.

Ii
tot ) 3

4π ∫r>Fi

solute
|r|-6 dV ≈ Ii

vdw + Ii
neck + Ii

chunk (7)

F6(Fi, Fj, rij) )
Fj

3

(rij
2 - Fj

2)3
(8)

F6(Fi, Fj, rij) )

1
16rij( rij + 3Fj

(rij + Fj)
3
+

3(Fj
2 - Fi

2 - (rij - Fi)
2) + 2rijFi

Fi
4 ) (9)

F6(Fi, Fj, rij) )
1

Fi
3
+

Fj
3

(rij
2 - Fj

2)3
(10)

F6(Fi, Fj, rij) ) 0 (11)

Ii
vdw ) ∑

j∉“chunk”i

F6(Fi, (Svdw
j )Fj, rij) (12)

neck_integral(rij, Fi, Fj) ≈

Aij(rij - Bij)
4(Fi + Fj + 2Fw - rij)

4 (13)
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of atoms in the molecule. The neck_integral(rij,Fi,Fj) function
is parametrized by Aij and Bij, which depend on Fi, Fj, and
Fw. Following a similar procedure to that of ref 54, we
tabulate the optimum values of Aij and Bij for different values
of Fi, Fj, and Fw. To obtain optimum values of Aij and Bij,
we compute the integral of |r|-6 over the “neck” region by
using the NSR6 procedure applied to a diatomic molecule
composed of the atoms i and j located at various distances
(different values of rij, Figure 2). We then store the distance
rij

max at which the integration over the “neck” region reaches
its maximum neckmax. The value of Bij is calculated by Bij

) 2rij
max - (Fi + Fj + 2Fw), and the value of Aij is computed

such that neck_integral(rij
max,Fi,Fj) ) neckmax. The values of

Aij and Bij for a range of Fi and Fj values are available in the
Supporting Information. Figure 3 illustrates that eq 13 is a
reasonable approximation of the “R6 integration” over the
“neck” region. By construction, eq 13 is differentiable in
the entire domain of rij.

Finally, the total integral over neck regions is approximated
by

where Sneck is a free parameter used to correct for the volume
overcounting due to overlaps between adjacent “neck”
regions, and overlaps between atoms and necks (we have
found that Sneck ) 0.4058 gives the best results, see below).

Integration oVer Chunk Regions: Ii
chunk. Since the integrand

|r|-6 is very large in the vicinity of atom i, it is critical to

treat the nearby regions of molecular volume particularly
carefully, ideally exactly. Compared to the relatively lower
power |r|-4 of the CFA integrand, this problem becomes
especially critical in the case of the R6. In our previous work
that focused on foundations of the R642 rather than its
practical implementation, the required accuracy was achieved
by brute force via inefficient numerical volume integration
over a very fine 3D mesh in the vicinity of i. Since here we
are set to develop an efficient analytical model, we take a
completely different approach. We isolate a small set of
neighboring atoms covalently connected to the atom of
interest i; see the exact definition below. The geometrical
configuration of this small set of atoms, which will be called
“chunk”, is not expected to change substantially during
dynamics. Thus, the contribution of the “chunk” to the
effective Born radius of atom i, Ii

chunk, can be computed
essentially exactly by the NSR6 procedure at the setup stage
and then subsequently reused at all other steps.

The neighbor atoms that form the “chunk” molecule for a
given atom i are determined by setting the “chunk depth”,
which is defined as the maximum possible integer distance
(in the graph-theoretic sense where atoms are the vertices
and covalent bonds are edges) between atom i and any other
atom in the “chunk”. In Figure 4, we show examples of
“chunks” of depths 1, 2, and 3 for the computation of the
effective Born radius of a nitrogen atom located in the protein
backbone. The “R6 radius” of each atom is computed with
the same specified “chunk depth”, except for the atoms with
only one bonded neighbor, such as hydrogen atoms. For these
atoms, the specified “chunk depth” is increased by 1. This
way, atoms with only one bonded neighbor and atoms with
multiple covalent neighbors are processed using chunks of
the same size. For example, when the “chunk depth” is set
to 1, the “chunk” used for the hydrogen atom of the molecule
labeled “Depth 1” in Figure 4 is composed of all of the atoms
of this molecule, which is the same as the “chunk” of Depth
)1 for the nitrogen atom.

Note that:
(a) The set of atoms that form the “chunk” do not change

during the classical dynamics of a molecule. If the
chunk depth is small enough, the chunk’s overall shape
is maintained during dynamics.

(b) The contribution of the chunk to the effective Born
radius of atom i can be calculated essentially exactly
by the NSR6 procedure described above.

To take into account possible variations (presumably still
small) in the chunk geometry during dynamics, we augment

Figure 2. Neck region (blue) between two atoms with radii
Fi and Fj and a water probe radius Fw. rij represents the
distance between atoms i and j.

Figure 3. The numerical integration over the “neck” region
(dashed black) compared with the analytical approximation
(solid blue) used here. In this example, we have used Fi )
1.7, Fj ) 1.2, and probe radius Fw ) 1.4 Å.

Ii
neck ) 3

4π
Sneck ∑

j∉“chunk”i

neck_integral(rij, Fi, Fj) (14)

Figure 4. Examples of “chunk” molecules of depths 1, 2, and
3 used for the computation of the effective Born radius of a
nitrogen atom (black circles).
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the computation of Ii
chunk as follows. The idea is to use a

fast analytical expression for Ii
chunk but correct it at every

step by a constant factor which accounts for the discrepancy
between the approximate analytical and the exact numerical
values of the |r|-6 integral over the “chunk”. To this end,
we define a correction factor, λi, as the ratio between the
numerically computed and the analytically computed values
of Ii

chunk; the constant λi is estimated once at the setup stage
(e.g., at time ) 0). For all other steps, Ii

chunk is computed
analytically on the basis of the current geometry of the
“chunk”, multiplied by the rescaling factor λi previously
computed, which compensates for the discrepancy between
the analytical and numerical results. The following two
equations define the procedure:

where M is the number of atoms in the “chunk”, rik
o is the

distance between atoms i and k found in the structure used
to set up the computation (e.g., at time ) 0). ∂Vchunk represent
the surface of the “chunk” molecule, Fi is the intrinsic radius
of atom i, and F6 is the same function used for VDW
integration. The value of Ri

chunk in eq 16, which is just the
effective Born radius of the “chunk”, is computed by the
NSR6 procedure.

Once the values of λi are computed at the setup stage for
each atom, the values of Ii

chunk for all of the following steps
are computed by

The “neck” regions of atoms that belong to the “chunk”
or that are covalently bonded to at least one atom of the
“chunk” are not considered, as they are very likely to overlap
with the “chunk” region (the corresponding neck integrals,
eq 13, are not computed). This restriction greatly reduces
the number of “necks” needed for each atom. For example,
the average number of possible necks per atom for thiere-
doxin (2TRX) is 60. However, once the “chunks” are defined
and their atoms excluded from the neck computation, the
average number of necks per atom reduces to 40 (30%
reduction); for small structures such as Ala10, the reduction
can approach 50%. It is important to note that the necks are
still present between atoms that are close in real space and
far in bond graph space, for example, those that form
hydrogen bonds. So we expect that the recapitulation of the
first peak in the PFMsssignature of the use of true molecular
volumespresented in ref 54 in which necks were originally
defined will still be maintained.

2.2.4. Rescaling the EffectiVe Born Radius. In order to
achieve the same computational benefits of the GB_OBC
model, such as numerical stability and efficiency, and to
obtain better accuracy for deeply buried atoms, we use a

similar radii rescaling procedure, which is determined by the
following equations that yield Ri

-1:

Here, A is the electrostatic size of the molecule, which is
essentially its “global” size, see ref 37 for details. Simple
and robust routines for computing this parameter are avail-
able; in practical MD simulations, it can be approximated
by a constant. The rescaling process in eqs 18-22 was built
such that if Ψf∞, then RifA. Thus, the effective Born
radius is upper-bounded by the molecular size A. On the other
hand, if Ψ , 1, then Ri

-1 ≈ (F̃i
-3 - Ii

vdw - Ii
neck)1/3: the

effective Born radii of surface atoms (with small effective
radii) are not affected by the rescaling process.

The constant offset parameter B was defined in ref 42 and
has a value of 0.028 Å-1. This parameter was introduced to
minimize the difference between the computed R6 radii and
the “perfect” effective Born radii for a molecular surface
computed with a water probe ) 1.4 Å; �1 and �2 are
adjustable parameters to be optimized.

2.2.5. Additional Volume Correction. When eq 22 is
applied to relatively large macromolecules such as lysozyme
or thioredoxin, we observe that while the computed effective
Born radii of solvent-exposed atoms are accurately estimated,
the effective Born radii of deeply buried atoms are system-
atically underestimated, relative to the “perfect” effective
Born radii. To correct this underestimation, we further rescale
the values of Ψ, eq 20, such that they are increased for buried
atoms but unaffected for solvent-exposed atoms. The res-
caling is achieved by multiplying Ψ by a function Vi that is
proportional to the degree of burial of atom i. This function
is similar to that of the “measure of the volume” introduced
by the FACTS56 analytical model of solvation:

where

The parameter Rs is set to 10 Å, which is the same value
used in the FACTS method.56 The inverses of the effective
Born radii are then computed by the following differentiable
expression:

λi )
Fi
-3 - (Ri

chunk)3

∑
k*i
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F6(Fi, Fk, rik
o )
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6
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which is the formula that defines the AR6 (Analytical R6)
GB flavor to be used throughout the rest of this work.

2.3. Parametrization. There are four parameters to be
optimized in the AR6 procedure, Svdw, Sneck, �1, and �2. In
the absence of a unique accepted strategy for such optimiza-
tions, a short discussion is due on the logic behind the
approach we take. Generally, one can consider two extreme
cases. On one end of the spectrum is the purely geometric
approach which aims only at achieving the closest agreement
between the approximate analytical and the “perfect”(exact)
effective Born radii. This approach is expected to work well
in a situation where the approximate analytical effective radii
can be made “uniformly” near-perfect via a suitable param-
etrization. When substituted into the “canonical” GB (Still’s)
formula, eq 1, these would give ∆Gel values very close to
those that can be obtained with the perfect (exact) radii
without any danger of overfitting, that is, without exceeding
the inherent accuracy limitations of Still’s formula itself.
Such an approach was taken in ref 42 to arrive at the optimal
value of a small constant offset parameter B (see above) that
gave the best agreement between the numerical R6 and
perfect (PB) radii. However, if the agreement between the
optimal approximate and the perefect radii is expected to be
nonuniform, for example, if the largest radii are expected to
be consistently underestimated, the approach is likely to be
suboptimal in terms of the accuracy of ∆Gel since it places
equal weights on different effective radii (small radii
contribute more to the solvation energy). On the other end
of the spectrum is the approach, often taken, where param-
eters of the GB flavor are optimized to give the most accurate
values of ∆Gel, or other energetic quantities, relative to some
appropriate reference such as the PB or explicit solvent
energies. The obvious advantage of the approach is a more
accurate ∆Gel for the training set. The danger is overfitting.
A good agreement between approximate and reference ∆Gel

along with poor agreement between the approximate and
perfect radii is an indicator of the problem; it was seen in
earlier GB flavors.57 In this work, we take a middle ground
between these two extremes: the four parameters of AR6 are
optimized against ∆Gel obtained via Still’s equation with NSR6
radii, not the PB solvation energies. Note that the energies
obtained by the GB model using numerically computed R6 radii
are in good agreement with those obtained by PB.42 We also
test agreement with the corresponding perfect radii, see below.
To reduce the possibility of overfitting further, we fit the two
sets of parameters, {Svdw,Sneck} and {�1,�2}, independently.

The rescaling factors Svdw and Sneck, eqs 12 and 14, are
optimized such that the total electrostatic solvation energies
∆Gel obtained by AR6 (through eq 2) match the ∆Gel of the
NSR6 procedure for four conformational states of an alanine
decapeptide (Ala10) represented in Figure 5. For the
optimization, each of the four conformational states of Ala10
was represented by 10 MD snapshots.39 The ∆Gel corre-
sponding to each conformational state is computed by
averaging the values of ∆Gel of each of their corresponding
MD snapshots. We have chosen the NSR6 ∆Gel rather than

the available TIP3P or PB numbers for optimization to avoid
overfitting. At this stage, the optimization is carried out with
�1 ) �2 ) 0, as these parameters are intended to correct the
underestimation of the effective Born radius of deeply buried
atoms, not found in the relatively small Ala10. Moreover,
fitting only two parameters at a time reduces the likelihood
of overfitting and allows for an exhaustive exploration of
the parameter domain.

We have used the Nelder-Mead58 simplex algorithm for
optimization. The objective function to be minimized was
the RMS deviation of total ∆Gel between the NSR6 and AR6.
The “chunk” contribution used in AR6 can be computed from
any of the four conformational states of Ala10; this results
in four different values of ∆Gel for each conformational state
of Ala10. The ∆Gel for each conformation used for optimiza-
tion is computed as the average of these four values. The
optimization was carried out using chunks of depth 3, as
they are the smallest chunks that provide correct ordering
of the values of ∆∆Gel between the four conformational
states of Ala10, see Table 1. Although the accuracy of the
approximation (determined by the RMSD values of Table
1) increases with the chunk depth, the larger the “chunk”,
the less accurate is our assumption that the “chunk” does
not change substantially during dynamics: depth ) 3 appears
to be an optimum compromise between these two opposite
trends. This important point will be discussed in more detail
below. For the rest of the analysis presented here, we use
only the depth ) 3 model.

The energies obtained by using AR6 with optimized
parameters Svdw and Sneck are in good agreement with the
energies obtained by using NSR6. It may be possible though
that this is the result of a fortuitous compensation between
the inherent errors in Still’s equation of the GB model (eq
1) and the errors due to the approximation of the effective
Born radii. Figure 6 shows the correlation plots between the
effective Born radii computed with the AR6 and NSR6
methods for the four different conformational states of Ala10.
The best agreement is obtained for the most solvent-exposed
conformational state “pp2”, with a correlation coefficient of
0.9968. For more compact structures such as “alpha” and

Ri
-1 ≈ (F̃i

-3 - ciF̃i
-3 tanh(�0ΨF̃i

3 - �1(ViΨFi
3)2 +

�2(ViΨFi
3)3))1/3 + B (25)

Figure 5. Cartoon representation of the four conformational
states of alanine decapeptide, Ala10, used in this work.
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“left”, AR6 also shows a good agreement with that of NSR6
with correlation coefficients of 0.9802 and 0.9799, respec-
tively. These results show that although the parameters were
optimized using total solvation energies, there is also a good
agreement between the effective Born radii obtained by AR6
and NSR6 for all of the conformational states of Ala10, and
thus the amount of possible error cancellation is not much
different from what one can expect from exact R6 used in
Still’s formula, eq 1.

Parameters �1 and �2 are meant to control the rescaling
process for large radii in eq 25, such that the rescaling is
large for deeply buried atoms and small for the exposed ones.
These parameters have little effect on effective radii of small
structures such as Ala10. Again, we used the Nelder-Mead

algorithm for the optimization. The objective function that
was minimized in this case is the RMSD between the ∆Gel

obtained by the GB and PB models for a training set
consisting of 11 proteins and two snapshots of the denaturing
trajectory of apo-myoglobin; the PDB codes of the 11
proteins of the training set are presented in Table 7 (bold
letters). We chose this strategy to be consistent with previous
work, particularly the optimization of GB_OBC.32 A com-
plete description of the training set is presented in the
Methodological Details section. The optimized values of the
four parameters are presented in Table 2; these values were
used for all of the calculations presented in the Results
section.

2.4. Analysis of the Different Geometric Contri-
butions to AR6. In this section, we analyze the relative
contribution of the different geometrical approximations used
in AR6, namely, the VDW spheres, the “necks”, the
“chunks”, and the additional volume correction. Figure 7
shows the correlation between the effective Born radii
computed by AR6 and NSR6, for the most solvent-exposed
conformation of Ala10, “pp2”, and for the compact confor-
mation, “alpha”. Here, AR6 effective radii were computed
with one or more of the geometrical contributions to the
molecular volume, Figure 1, “switched off”. These results
shows that it is the combination of the necks’ contribution
and the approximation of the R6 in the “chunk” regions that
contributes most to the good approximation to the numeri-
cally exact R6 integration for small molecules such as Ala10.

Figure 6. Comparison of the inverse of the approximated R6 effective Born radii (AR6) with the exact R6 effective Born radii
(NSR6) for the four conformational states of Ala10. Every point represents the average Born radius over four possible “chunks”,
with the error bars representing standard deviations.

Table 1. Free Energies of Solvation for Different
Conformations of Ala10 (kcal/mol) Obtained with the AR6
and the NSR6 Proceduresa

AR6

NSR6 depth 1 depth 2 depth 3 depth 4

(A) ∆Gel

alpha -45.73 -44.10 -46.53 -45.84 -45.51
PP2 -77.85 -73.37 -79.97 -78.30 -78.24
left -50.91 -47.81 -50.16 -51.13 -50.86
hairpin -54.59 -52.98 -57.07 -54.95 -54.28
RMSD 0.0 2.96 1.71 0.31 0.27

(B) ∆∆Gel

PP2-alpha -32.12 -29.27 -33.44 -32.46 -32.73
PP2-left -26.94 -25.56 -29.81 -27.17 -27.38
PP2-hairpin -23.26 -20.39 -22.90 -23.35 -23.96
alpha-left 5.18 3.71 3.63 5.29 5.35
alpha-hairpin 8.86 8.88 10.54 9.11 8.77
left-hairpin 3.68 5.17 6.91 3.82 3.42

a Solvation energies were computed using εout ) 80, εin ) 1,
and κ ) 0. The parameters used are Svdw ) 0.6211, Sneck )
0.4058, and �1 ) �2 ) 0. The values of RMSD are relative to the
NSR6 procedure.

Table 2. Optimized Parameters

parameter value

Svdw 0.6211
Sneck 0.4058
�1 18.4377
�2 313.7171
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Once the “chunks” and “necks” are properly taken care of,
the contribution of VDW spheres is almost negligible for
small molecules, but it becomes more noticeable in larger
structures.

The contribution of the additional volume correction, eq
23, is almost negligible for small structures such as Ala10.
However, the contribution of this correction is more evident
when the method is applied to a relatively large structure
such as thioredoxin. Figure 8 shows that when no volume
correction is applied (�1 ) �2 ) 0), the effective Born radii
of buried atoms (located in left-most side) are systematically
underestimated. When the additional volume correction is
activated, the effective Born radii of buried atoms are
substantially shifted down toward the correct values of NSR6.
Notably, atoms with a small effective Born radius (located
in left-most side of Figure 8) are almost unaffected by the
rescaling via �1, �2 > 0.

3. Results

Below, we give a brief summary of the accuracy of the AR6
compared with the explicit solvent and the numerical PB
model. A detailed description of the results is provided in
the following subsections.

One of the problems with current AMBER GB methods
was reported recently by Roe et al.39 They have demonstrated
that these methods show a clear bias in the free energies of
solvationshence in the relative populationssof four con-
formations of a small Ala10 molecule, Figure 5. In Figure
9, we show the error, with respect to explicit solvent, of the
∆∆Gel computed by numerical PB, GB_OBC, and AR6,
between the four conformational states of Ala10. The ∆∆Gel

is defined as the difference in ∆Gel between two conforma-
tional states. Clearly, AR6 is in better agreement with the
explicit solvent model than the GB_OBC, having a maximum
deviation of 2 kcal/mol. The maximum deviation is 3.9 and
2.3 kcal/mol for GB_OBC and PB, respectively. In fact, on
average, AR6 appears to be at least as accurate as the PB in
this test. In this summary, we compare AR6 only with
GB_OBC, as other GB methods tested by Roe et al. were
less accurate.

The accuracy of AR6 is also tested by computing the ∆Gel

for a set of 22 biomolecular structures and comparing the
corresponding numerical PB numbers. The set of structures
consists of 19 small proteins, thioredoxin, lysozyme, and a
B-DNA molecule, see the Methodological Details section
for more details. Table 3 shows the RMSD between ∆Gel

from the AR6 and the PB model. The RMSD values of the
NSR6 and GB_OBC models are also presented in Table 3
for comparison.

Finally, the agreement in the computed ∆∆Gel values
between numerical PB and AR6 is also verified on the
denaturation trajectories of apo-myoglobin and protein-A,
see the results in Table 4. In the following subsections, these
results are explored in more detail.

3.1. Accuracy of ∆Gel: Detailed Analysis. Comparison
with explicit solvent models is arguably the most rigorous
way to test the performance of any GB model, second only
to direct comparisons with experimental results. [However,
the latter may not be as clean since GB only computes ∆Gel,

Figure 7. Comparison of the inverse of the approximated R6 effective Born radii (AR6) with the exact R6 effective Born radii
(NSR6) for the pp2 (left) and alpha (right) conformational states of Ala10. Red × marks, AR6 with only the chunks contribution
(Svdw ) Sneck ) 0). Green + marks, AR6 with chunks and neck contribution (Svdw ) 0, Sneck ) 0.4058). Blue circles, AR6 with
all of the contributions (Svdw ) 0.6211, Sneck ) 0.4058). In all cases, we have used �1 ) �2 ) 0, and a chunk depth of 3.

Figure 8. Comparison of the inverse of the approximated R6
effective Born radii (AR6) with the “exact” R6 effective Born
radii (NSR6) for thieredoxin (2TRX). Green circles, AR6 with
no additional volume correction (�1 ) �2 ) 0). Blue plus marks,
AR6 with optimized parameters from Table 2.
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not the total solvation energy, ∆Gsolv, available from the
experiments.] Table 5 shows the results of Roe et al. for
TIP3P, PB, GB_HCT, GB_OBC, and GBNeck, plus the
results obtained here for the new R6 “flavors” AR6 and
NSR6. For the values of ∆Gel computed by AR6 and NSR6,
each conformational state was represented by 100 MD
snapshots.39 The ∆Gel for each conformational state is
computed by averaging the values of ∆Gel of each of their
corresponding MD snapshots. Similar to the optimization

process, there are four possible values of ∆Gel for each
conformational state of Ala10, corresponding to the four
possible conformational states used to set up “chunks”. The
final ∆Gel presented in Table 5 for each conformational state
is obtained by averaging these four values. An analysis of
the sensitivity of ∆Gel to the choice of initial structure to set
up “chunks” is presented below.

The results in Table 5 show that compared to the other
analytical GB flavors tested, the ∆∆Gel’s obtained with AR6
are in closer agreement to the ∆Gel obtained by TIP3P. AR6
also shows a good agreement with the explicit solvent model
in the computation of difference in solvation energy (∆∆Gel).
Table 5 shows that, relative to TIP3P, the values of ∆∆Gel

between PP2 and alpha are underestimated by -6.64,
-3.632, and +2.01 kcal/mol by GB_HCT, GB_OBC, and
GBNeck, respectively. Notably, AR6 is almost an exact
match; it underestimates the ∆∆Gel by only -0.4 kcal/mol
relative to the TIP3P. This suggests that AR6 is not biased
toward the alpha conformation in contrast to GB_OBC. The
AR6 model overestimates TIP3P values by only 1.45 kcal/
mol for the ∆∆Gel between PP2 and left, and by 0.8 kcal/
mol for the ∆∆Gel between PP2 and hairpin. Overall, the
∆∆Gel obtained by AR6 is in good agreement with the
explicit solvent method, with an RMSD of 1.18 kcal/mol.
This error is smaller than that in all GB flavors tested by
Roe et al.,39 and essentially the same as the PB result.

Table 5. Free Energies of Solvation between Different Conformations of Ala10 (kcal/mol)a

TIP3P PB GB_HCT GB_OBC GBNeck NSR6 AR6

(A) ∆Gel

alpha -44.08 -47.97 -51.69 -49.38 -43.26 -45.76 -45.94
PP2 -76.39 -78.05 -77.35 -78.07 -77.59 -77.50 -77.85
left -51.30 -54.85 -55.05 -52.67 -48.19 -51.12 -51.31
hairpin -54.16 -57.28 -57.48 -56.03 -52.85 -54.46 -54.79

(B) ∆∆Gel

PP2-alpha -32.31 -30.07 -25.67 -28.69 -34.33 -31.73 -31.91
PP2-left -25.09 -23.19 -22.31 -25.40 -29.40 -26.37 -26.54
PP2-hairpin -22.23 -20.77 -19.87 -22.03 -24.73 -23.04 -23.06
alpha-left 7.22 6.88 3.36 3.29 4.93 5.35 5.37
alpha-hairpin 10.08 9.31 5.80 6.66 9.60 8.69 8.85
left-hairpin 2.86 2.43 2.43 3.37 4.67 3.34 3.48

(C) ∆∆Gel Root Mean Square Deviation
overall 1.39 3.89 2.60 2.51 1.17 1.18
PP2 1.89 4.37 2.10 3.11 0.94 0.99
non-PP2 0.55 3.34 3.02 1.71 1.37 1.33

a The data of TIP3P, GB_HCT, GB_OBC, GBNeck, and PB were taken from Roe et al.39 Solvation energies were calculated using εout )
80, εin ) 1, and κ ) 0.

Figure 9. Absolute error in ∆∆Gel, relative to the explicit solvent model, between four different conformational states of Ala10
(alpha, PP2, left, and hairpin). The energies were obtained using PB (solid red bars), GB_OBC (cross-hatched green bars), and
AR6 (striped blue bars). The ∆∆Gel for conformational states A and B is defined as ∆∆Gel(A - B) ) ∆Gel(A) - ∆Gel(B).

Table 3. RMSD of the Solvation Energies (kcal/mol),
Relative to the PB Reference of Three GB Flavorsa

NSR6 AR6 GB_OBC

RMS 9.98 16.72 50.49

a The computation was carried out on a set of 22 structures
using optimized parameters from Table 2 and a “chunk” depth
of 3.

Table 4. Change in the Electrostatic Part of the Solvation
Free Energy, ∆Gel(N) - ∆Gel(U) [kcal/mol], of
Apo-Myoglobin and Protein-A on Going from the Unfolded
(U) to the Native (N) State Computed with PB and GB
Models

PB AR6 GB_OBC

(apo)myoglobin, pH ) 2 -2087 -2088.2 -2089.9
protein-A, pH ) 7 143.37 144.02 145.1
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When using the original Still’s equation instead of eq 2
used throughout this work, the overall RMSDs of ∆Gel and
∆∆Gel between AR6 and TIP3P results are 1.59 and 1.21
kcal/mol, respectively, which are almost the same as the
values present in Table 5. Thus, the improvement showed
in Table 5 is mostly due to the use of AR6 for effective
radii computation rather than the use of eq 2 instead of the
original Still’s equation.

3.2. Accuracy of the Effective Born Radii. The “perfect”
(obtained via numerical PB calculations) effective Born radii
are often used as benchmarks for the accuracy of different
GB flavors, as such comparisons can help identify sources
of error in the computation of the approximate effective
radii.42,54,59 In Table 6, we show the RMSD of the inverse
of the effective radii obtained by AR6 and GB_OBC, relative
to the “perfect” effective Born radii. We have chosen to
analyze inverse effective Born radii because they directly
represent the contribution of effective Born radii to the energy
in eq 2. These results show a significant improvement in
the accuracy of inverse effective radii computed by the AR6
compared to those computed by GB_OBC in all of the cases
except for B-DNA, in which AR6 shows a deviation from
the PB reference that is slightly greater than the one produced
by GB_OBC. However, the ∆Gel of B-DNA produced by
GB_OBC is in fact less accurate than the corresponding AR6
number, see the next subsection for details. A more detailed
comparison between the two sets of effective radii is
presented in Figure 10, which compares the inverse of the
effective Born radii computed by AR6 and the inverse of
the “perfect” effective Born radii. We see that AR6 shows
improvement over GB_OBC in the entire range of the
effective radii. Particularly, AR6 agrees well with the perfect

radii in the region of small effective radii. It is worth noting
that it is this region that contributes most to the energy in
eq 2. AR6 is also, on average, more accurate than GB_OBC
in regions of large effective Born radii that correspond to
atoms deeply buried inside the protein.

3.3. Accuracy of ∆Gel Relative to the PB. Here, the
electrostatic part of the solvation energy is calculated by the
PB, AR6, GB_OBC, and NSR6 methodologies, on a data
set composed of 19 small proteins, thioredoxin, lysozyme,
and a B-DNA molecule, see the Methodological Details
section for details. These structures were used earlier for
parametrization of GB models.42 The results of this com-
parison are shown in Table 7. AR6 has an overall RMSD of
16.7 kcal/mol relative to the PB reference compared to 50.5
kcal/mol for the GB_OBC model. The percent errors of the
GB models shown in Table 7 were calculated as the
arithmetic mean of 100(∆Gel(GB) - ∆Gel(PB))/|∆Gel(PB)|
over all 22 molecular structures. Interestingly, the results
show that, on average, both GB_OBC and AR6 models
produce a relative error close to zero. Thus, just like
GB_OBC, AR6 does not appear to have a systematic bias
relative to the PB.

3.4. Sensitivity to the Choice of “Chunks”. If two or
more conformational states are available for a given mol-
ecule, then it is possible to use any of those conformational
sates to compute the “chunks” contribution, λi, which can
result in different values of ∆Gel. Here, we test the sensitivity
of AR6 to the choice of the structure used to set up “chunks”.
The values of ∆Gel for AR6 in Table 5 (upper block) for
each conformational state of Ala10 were obtained by
averaging the four ∆Gel values corresponding to each of the
four conformational states of Ala10 used to set up “chunks”.
The corresponding standard deviations, considering the four
possibilities of “chunks”, are 0.44, 0.62, 0.63, and 0.59 kcal/
mol for alpha, PP2, left, and hairpin, respectively. Thus, for
small molecules such as Ala10, the variation in ∆Gel due to
the choice of structure for setting up “chunks” is very small
relative to the absolute values of ∆Gel. To further analyze
this sensitivity in larger molecules, we compare the ∆∆Gel

between the PB and AR6 for the denaturation trajectories
of apo-myoglobin and protein A. The results are summarized

Figure 10. Comparison of the inverse of the approximated effective Born radii (GB Reff
-1) with the “perfect” effective Born radii

(PB Reff
-1) for 19 small proteins (left) and thioredoxin (right). Approximated effective radii were computed by AR6 (red) and GB_OBC

(blue). Correlation coefficients rxy are indicated in parentheses.

Table 6. RMSD (Å-1) between the Inverse of Effective
Born Radii Computed by the GB_OBC and AR6, Relative
to the Perfect Born Radii

GB_OBC AR6

small proteins 0.061 0.046
thioredoxin 0.128 0.077
lysozyme 0.114 0.064
B-DNA 0.051 0.054
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in Table 8. Having two protein conformations (in the native
and unfolded states), it is possible to compute “chunk”
contributions from two completely different sources, one
from a snapshot of the native state (chunk “N” in Table 8),
and the other from a snapshot of the unfolded state (chunk
“U” in Table 8). Ideally, ∆∆Gel computed using such
different “chunks” should be identical. According to our
procedure, the “chunks” contribution (and thus ∆Gel) depends
slightly on the initial configuration. The results in Table 8
show that the change in ∆∆Gel is relatively small between
the use of different “chunks”: 4.5 kcal/mol for apo-myoglobin
and 0.25 kcal/mol for protein-A. Moreover, these results
show that AR6 is in good agreement with PB in the
computation of ∆∆Gel.

In order to further extend the analysis of the sensitivity of
energy to the use of different “chunks”, we show in Figure
11 the solvation energy along the unfolding trajectory of
protein-A produced by AR6 using different “chunk” sets.

These results show that the variation of energy due to the
use of two different “chunks” is smaller (with a standard
deviation of 2 kcal/mol) than the error between the PB
method and the AR6 method when chunks are calculated
numerically for each snapshot of the protein-A unfolding
trajectory (standard deviation 6 kcal/mol). Thus, although
chunks of depth 3 may undergo conformational changes
during dynamics, the variation in energy produced by these
changes are “safely” smaller than the overall error produced
by the GB model using AR6, relative to the reference PB
model.

3.5. Further Optimization: The Tabulated Chunks.
The most expensive stage in the AR6 method is the
computation of the chunk contributions, λi, as it requires a
surface triangulation over N chunk molecules, N being the
number of atoms. This one-time expense is not critical if
AR6 is used in MD simulations or to compute the ∆Gel of
one structure at different conformational states, because the
values of λi are computed only once at the initial stage and
then reused for all subsequent calculations. However, if the
goal is to quickly compute ∆Gel once, for a set of different
structures, the computation may become expensive, espe-
cially for large sets of structures, as this requires computing
λi for every atom of the set of structures. Moreover, the
values of λi depend (though slightly) on the choice of the
conformational state used to set up the “chunks”. This
ambiguity has the potential drawback of generating path-
dependent energy values during MD simulations. While
harmless for an ergodic trajectory, it may present a certain
inconvenience under some circumstances.

One way to speed up the setup stage of the AR6 method,
and at the same time eliminate the ambiguity in the selection
of conformational states to set up the “chunks”, is to tabulate
an optimum or an average value of λi, eq 17, for every atom
type within a specific amino acid or nucleotide and save it
in a lookup table for all future computations. Within this
protocol, the setup stage will consist only of reading “chunk”
contributions from a lookup table, which is inexpensive. We
test this strategy in Table 9, where we present the values of
∆Gel and ∆∆Gel for the four conformations of Ala10,
obtained by the AR6 method in which the same values of λi

were used for every distinct atom type in alanine residue.
The set of pretabulated {λi} is obtained by averaging the λi

of the central residues of the four conformational states
(chunk depth ) 3). The results show an insignificant
deviation from the original results shown in Table 5: they
are still in better agreement with TIP3P than the GB methods
tested by Roe et al. Thus, the use of tabulated λi is a
promising way to speed up the setup process, introducing
little deviation from the original procedure in which λi is
numerically computed for every atom of the molecule, at
the setup stage.

3.6. Molecular or VDW Surface As Dielectric Boun-
dary? Traditionally, numerical PB calculations have used
the Lee-Richards molecular surface to define the solute/
solvent dielectric boundary. This definition is supported by
various studies that compared the PB ∆Gel with those from
the explicit solvent.46,47 On the other hand, the use of the
van der Waals surface in this context has also been

Table 7. Electrostatic Solvation Energies (kcal/mol) for a
Set of 22 Structuresa

PDB PB NSR6 AR6 GB_OBC

1az6 -364.73 -353.36 -358.65 -369.87
1byy -619.13 -618.88 -625.78 -597.41
1eds -499.77 -488.10 -489.4 -492.05
1g26 -551.49 -539.00 -549.08 -532.18
1qfd -539.09 -527.90 -541.72 -526.8
1bh4 -473.11 -463.30 -460.28 -437.49
1cmr -744.44 -739.29 -789.11 -762.21
1fct -853.06 -854.41 -860.69 -836.43
1ha9 -669.2 -668.81 -669.79 -646.26
1qk7 -606.12 -600.87 -620.21 -607.56
1bku -660.81 -657.31 -669.51 -674.11
1dfs -757.76 -756.22 -802.15 -797.66
1fmh -1482.9 -1493.00 -1501.5 -1481.5
1hzn -577.02 -569.69 -584.38 -598.37
1scy -626.19 -612.96 -609.52 -625.12
1brv -437.28 -435.38 -443.58 -466.15
1dmc -894.03 -890.10 -901.63 -848.77
1fwo -788.95 -774.14 -790.44 -774.33
1paa -1401.2 -1411.30 -1401.4 -1397.4
2trx -1602.4 -1595.90 -1603.2 -1608.9
2lzt -2121 -2100.80 -2099.3 -2100.5
bdna -4774.7 -4790.10 -4790 -4558.3

percent error -0.90% 0.58% -0.67%
unsigned percent error 1.07% 1.55% 2.67%

RMSD 9.69 16.72 50.49

a The solvation energies were calculated using εout ) 1000, εin

) 1, and κ ) 0. In all cases, we used the optimized parameters
on Table 2 and depth ) 3 for AR6. The structures in bold were
used in the optimization process as a training set. The errors are
computed relative to the numerical PB reference.

Table 8. Change in the Electrostatic Part of Solvation Free
Energy, ∆∆G ) ∆Gel(N) - ∆Gel(U) [kcal/mol], of
Apo-Myoglobin and Protein-A on Going from the Unfolded
(U) to the Native (N) State Computed with the PB and AR6
Modelsa

AR6

PB chunk N chunk U

(apo)myoglobin, pH ) 2 -2087 -2088.2 -2083.8
protein-A, pH ) 7 143.37 144.02 144.27

a The computations were carried out using “chunks” from one
snapshot of the native state (chunk N) and from one snapshot of
the unfolded state (chunk U).
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advocated,60,61 including some recent implementations of the
R6 flavor.44,45 While the precise nature of the physically
realistic dielectric boundary is still an open and complex
issue62 clearly outside of the scope of this work, it is still
appropriate to ask a very focused question here: between
the VDW and molecular surface based definitions of the
dielectric boundary, which one leads to a better agreement
with the explicit solvent ∆Gel for the set of representative
conformation states of alanine decapeptide?

The unambiguous answer is presented in Figure 12, which
shows the error in the electrostatic part of the solvation free
energy computed by the numerical PB relative to the
corresponding TIP3P values as a function of the probe radius
used to determine the molecular boundary. Geometrically,
as the probe radius decreases, the molecular volume used in
the PB computation approaches the VWD volume. The
results in Figure 12 show that the error always increases as

the probe radius goes to zero and the dielectric boundary
becomes the VDW surface. This means that at least for the
set of representative shapes of a small peptide, Figure 5, the
use of the Lee-Richards molecular surface for the dielectric
boundary in PB calculations results in consistently better
agreement with TIP3P solvent model than do the VDW-
based definitions. Since the GB model is essentially an
approximation of the PB model, these results suggest that
in order to obtain more accurate electrostatic solvation free
energies relative to the explicit solvent, the dielectric
boundary used in the computation of the effective Born radii
should strive to approximate the Lee-Richards molecular
surface, not the VDW surface.

3.7. Total solvation Free Energies of Small Mol-
ecules. Here, we compute the total solvation energy, ∆Gsolv

) ∆Gel + ∆Gnonpol, for a “challenge” set of small molecules
and compare the results with the experimentally available
∆Gsolv. The structures of the test molecules were taken from
a recent study by Nicholls et al.63 in which a set of 17
“challenging” drug-like small molecules were proposed for

Figure 11. Left: solvation energy along the MD unfolding trajectory of protein-A (PDB ID: 1BDD) obtained by PB (solid lines)
and AR6 (dashed lines). The AR6-based energies were obtained using “chunks” from one snapshot of the folded (chunk F, red)
and unfolded (chunk U, blue) states, and from “chunks” computed numerically for each snapshot of the MD trajectory (“exact
chunks”). Right: Difference in energy after elimination of the systematic constant deviation between GB and PB. Green, difference
between PB and AR6 “exact chunks” computed for each snapshot. Dashed blue and red lines, difference between AR6 using
different chunks (chunk F or chunk U) and AR6 using “exact chunks”.

Table 9. Free Energies of Solvation between Different
Conformations of Ala10 (kcal/mol)a

AR6

TIP3P PB original chunks
pretabulated

chunks

(A) ∆Gel

alpha -44.08 -47.97 -45.94 -46.21
PP2 -76.39 -78.05 -77.85 -78.11
left -51.30 -54.85 -51.31 -51.55
hairpin -54.16 -57.28 -54.79 -54.96

(B) ∆∆Gel

PP2-alpha -32.31 -30.07 -31.91 -31.9
PP2-left -25.09 -23.19 -26.54 -26.56
PP2-hairpin -22.23 -20.77 -23.06 -23.15
alpha-left 7.22 6.88 5.37 5.34
alpha-hairpin 10.08 9.31 8.85 8.75
left-hairpin 2.86 2.43 3.48 3.41

(C) ∆∆Gel root mean square deviation
overall 1.39 1.18 1.21
PP2 1.89 0.99 1.03
non-PP2 0.55 1.33 1.37

a The data of TIP3P and PB were taken from Roe et al.39

Solvation energies were calculated using εout ) 80, εin ) 1, and
κ ) 0.

Figure 12. Absolute error of the numerical PB ∆Gel, relative
to the explicit solvent (TIP3P) reference, as a function of
the probe radius used to set the dielectric boundary in the
PB calculations. The computations are performed for the
four conformational states of alanine decapeptide shown
in Figure 5.
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the purpose of testing different computational methods aimed
at prediction of solvation free energies.

Here, the electrostatic part of the solvation energy is
computed by eq 2 and the NSR6 method, eq 6. [For single-
point calculations, AR6 has no computational advantage over
NSR6 unless pretabulated chunks are available.] The non-
polar component of ∆Gsolv is divided into the “cavity” and
the “solute-solvent van der Waals interactions” terms:

We compute ∆Gcav by applying an atom-independent surface
tension γ to the solvent-accessible surface area (SASA):
∆Gcav ) γ(SASA), where γ is set to 0.065 kcal/(mol Å2),
which is the value used in ref 63. We compute ∆GvdW by
the following expression proposed by Gallicchio and Levy:33

where µ is a dimensionless adjustable parameter, Fw is the
water probe radius, Ri is the effective Born radius of atom i,
and ai depends on the number density of water and the
Lenard-Jones parameters for each atom i. The methodology
to compute ai proposed by Gallicchio and Levy33 is described
in the Methodological Details section. In the original
formulation of Gallicchio and Levy, µ is an atom-dependent
parameter. For simplicity, here we use a constant atom-
independent parameter instead. Thus, µ is the only adjustable
parameter used for the computation of ∆Gsolv. We found that
its optimum value for the “challenge” set is µ ) 1.838. A
comparison plot between the computed and experimentally
determined ∆Gsolv is presented in Figure 13. The results are
at the same level of accuracy as those reported in ref 63.
The RMSD values between the experimentally and compu-
tationally determined ∆Gsolv are 1.73 kcal/mol for our method
and 1.88 kcal/mol for that of Nicholls et al., which is based
on the PB model.

These results are encouraging considering the relative
computational efficiency of the approach: after the computa-

tion of ∆Gel, the potentially equally expensive ∆GvdW in eq
27 is obtained at virtually no additional cost because the Ri

values have already been computed. In contrast, PB-based
methods would require an independent computation of Ri in
eq 27, in addition to numerically solving the PB equation.

4. Conclusion

In this work, we have developed a new analytical method,
AR6, to compute the effective Born radii. We were motivated
by a recently reported deficiency of a set of currently
available GB models that were shown to produce a clear
energy bias among representative conformations of a small
deca-alanine peptide. Our proposed model is based exclu-
sively on the |r|-6 (R6) integration, which was shown earlier
to produce a good approximation to the PB model when
applied to protein structures. The R6 approach advocated
here is simplesbased on a single integralsand has a solid
theoretical basis. Since it was already shown that the R6
effective radii can, in principle, deliver electrostatic solvation
energies as accurate as those based on the “perfect” PB-
based radii, we chose the R6 flavor as the best candidate to
improve the accuracy performance of the GB. Our goal was
to lay a foundation for an efficient, robust analytical R6
routine that can in the future be used in MD simulations.
However, we found that in the R6 case, high accuracy
integration over the physically realistic molecular volume
is much more difficult than in the case of the still widely
used, but less accurate CFA approximation where the
singularity of the integrand, |r|-4, is lower: 4 instead of 6.
Essentially, the R6 approach is much less forgiving to small
integration inaccuracies in the vicinity of the atom in
question. To achieve the required accuracy, we perform the
integration over an approximation to molecular volume that
adds several computationally efficient corrections to the
pairwise VDW-based integration to closely approximate the
true molecular volume in the vicinity of each atom. One of
the key elements of the proposed approximation is the use
of predefined groups of atoms, “chunks”, over which the
integration is performed numerically exactly, at the setup
stage. The “chunk” contributions to the total integral are then
reused. A “chunk” is a small set of atoms around the atom
in question. The set is chosen using the known covalent
connectivity of the atom to its neighbors in such a way that
the geometry of the chunk is not expected to change
substantially during dynamics.

Several additional approximations developed earlier by this
group were also used, including those employed in the
popular GB_OBC model in AMBER. Apart from the
computation setup costs, the resulting analytical R6, or
“AR6”, model is at least as efficient as GB_OBC. The
proposed model uses a number of simplifications relative to
many other GB flavors; for example, it has only a single
adjustable parameter to account for volume overcounting due
to atoms overlapping, as opposed to one for each atom type.
In all, AR6 has four fitting parameters separated into two
groups of two parameters that can be fitted independently.
The latter property has allowed a nearly exhaustive search
in the parameter space and lowered chances for overfitting.

Figure 13. Comparison of computed solvation energies with
the experimentally determined solvation energies for a “chal-
lenging” data set of small drug-like molecules. Blue: PB plus
the cavity term (PB/SA) approach from Nicholls et al.63 Red:
GB NSR6 plus cavity and van der Waals terms (GB NSR6/
(SA+VDW)).

∆Gnonpol ) ∆Gcav + ∆GvdW (26)

∆GvdW ) µ ∑
i

ai

(Ri + Fw)3
(27)
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We have performed a fairly extensive set of accuracy tests
for AR6. These included comparing electrostatic solvation
free energies (∆Gel) against the numerical PB and explicit
solvent simulations where available. In particular, we tested
the accuracy of AR6 on four conformational states of alanine
decapeptide that were used previously to reveal the energetic
bias of several GB models, in particular, AMBER’s GB_OBC.
We have found that, relative to the explicit solvent, the RMS
error of changes in ∆Gel between various pairs of confor-
mational states computed via AR6 equals that of the
numerical PB treatment, and it is 2 times lower than that of
GB_OBC. Tests against the PB treatment on 22 biomolecular
structures including proteins and DNA have shown that the
RMS error in ∆Gel is 3 times lower than the corresponding
value for GB_OBC. When used to compute the difference
in ∆Gel over unfolding trajectories of apo-myoglobin and
protein-A, AR6 shows similar accuracy to GB_OBC, which
was originally parametrized using apo-myoglobin folding/
unfolding snapshots. Sensitivities of ∆Gel to several key
approximations have been tested as well. We have also
explored a variant of the approach to eliminate the setup
costs via the use of pretabulated chunks. The accuracy of
this variant, which carries no setup costs, is virtually the same
as that of the original. While a difference in the setup
efficiency is probably not critical in MD simulations, where
the setup time is only a tiny fraction of the whole simulation
time, the pretabulated approach may be found easier to
implement. To summarize, the analytical AR6 flavor to
compute the effective Born radii offers a clear improvement
in accuracy over a set of popular pairwise methods based
on the CFA, without apparent sacrifices in computational
complexity. This makes the approach a promising candidate
for applications that require repetitive computations of ∆Gel

such as molecular dynamics. While it was developed with
MD in mind, and robustness, stability, and differentiability
were strictly enforced, extensive further testing directly in
MD is needed, and is planned to be done in the future.

Two other points not directly related to the analytical R6
model, but relevant to continuum electrostatics and GB
models, were also investigated. We have tested a version of
the R6 flavor, NSR6, which is based on a direct surface
integration over a numerically triangulated molecular surface.
While NSR6 is mathematically equivalent to the molecular
volume integration approach, which was explored earlier,
the surface-based routine is much faster. To assess its
potential in a practical setting, we used it on a recently
published “challenge” set of small drug-like molecules. In
this endeavor, the total solvation free energy was computed
as the sum of the polar part from NSR6 and the nonpolar
part estimated via the cavity and VDW terms as proposed
earlier by Gallicchio and Levy.33 With only one fitting
parameter, we were capable of predicting the total solvation
free energy to within 1.73 kcal/mol RMS error relative to
the experiment, which is at least as accurate as the recently
reported PB-based estimates. Note that within the R6
formulation, computation of the nonpolar contribution is
particularly efficient because its VDW part depends on the
same |r|-6 integrals. We stress, however, that this little
excursion into the realm of small molecule free energy

estimates serves only one purpose: to demonstrate promise
of the R6 approach for this field. In our view, the results
warrant further investigation of this promise by interested
parties.

We have also touched upon a still debated issue of which
surface definition better approximates the molecular boundary
in the context of continuum solvent electrostatics: the
Lee-Richards (molecular surface) or the van der Waals
surface? For the four conformational states of alanine
decapeptide used in this and previous works, the answer we
have found is unambiguous (and not unexpected): the
molecular surface yields ∆Gel in much closer agreement with
the explicit solvent results.

All of the software developed during this work is available
from http://people.cs.vt.edu/∼onufriev/software.php.

5. Methodological Details

The structures of the four conformational states of Ala10
were kindly provided by Daniel Roe. A detailed description
of the Ala10 structures and the methods used to compute
∆Gel for these structures can be found in Roe et al.39 The
remainder of this paragraph is a brief summary of these
procedures. The trajectories of the four conformations of
Ala10 were obtained from REMD simulations using TIP3P
as a solvent model. The values of ∆Gel were then calculated
by thermodynamic integration using the trajectories of the
REMD simulation. The PB reference energies of the Ala10
snapshots were calculated with DELPHI, version 2.0,64 with
a grid spacing of 0.25 Å. The GB results (except for NSR6
and AR6) were obtained with the AMBER package with igb
) 1 for GB_HCT, igb ) 5 for GB_OBC, and igb ) 7 for
GBNeck. In both models, GB and PB, εout ) 78.5, εin ) 1,
and the ionic strength was set to zero.

The data set of structures used for optimization and testing
of AR6 was randomly selected from a larger data set of
representative proteins structures from Feig et al.,65 the
selection criterion being that the compounds are small enough
to allow for high-resolution grid computations. Their PDB
IDs are presented in Table 7, in which the PDB IDs in bold
were used as the training set. Chain “A” or “model 1” has
been chosen when appropriate. The assignment of partial
charges, protonation states, etc. are described in ref 65. In
addition, a canonical B-DNA 10 base pair structure from
ref 26 has been used. The Bondi radii set was used for all
molecules of this data set. The random selection has resulted
in a fairly representative sampling of various structural
classes and charge state. The total charge of the structures
varies from -18(B-DNA) to +9 (lysozyme) with most of
the structures (17) falling in the range from -4 to +4. The
structural composition of the proteins is as follows: seven
mostly R helical, four mostly � sheet, five roughly equal
mix of R/�, and five mostly disordered. The size of most of
these proteins is about 30 amino acids, although two of them
are larger: 2trx (thioredoxin) and 2lzt (lysozyme) have 108
and 129 residues, respectively.

The “perfect” effective Born radii were calculated using
numerical PB treatment as implemented in APBS 0.4.0.66

A separate calculation was performed for each atom of each
molecule. In each calculation, the partial charge of the atom
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of interest was set to 1, while partial charges of all other
atoms were set to zero. A 129-point cubic grid centered on
the atom of interest was used to discretize the problem.
Multiple Debye-Huckel boundary conditions were used for
the initial grid, which was sufficiently large so that no portion
of the molecule was closer than 4 Å to the edge of the grid.
Each focusing step halved the grid spacing, while maintaining
the same number of grid points. Focusing step boundary
conditions were derived from the potential calculated on the
immediately preceding grid. Focusing continued until the grid
spacing reached 0.1 Å. Except where otherwise indicated,
all calculations used a nonsmoothed molecular surface
definition with a probe radius of 1.4 Å and a surface probe
point density of 50. A four-level finite-difference multigrid
solver was employed in conjunction with the linearized
Poisson-Boltzmann equation (which reduces to the Poisson
equation since ion concentrations were zero). Charge was
discretized using cubic B-splines. All solvated calculations
used a dielectric constant of εout ) 1000 to mimic the
conductor limit εoutf∞ and, therefore, avoid masking the
geometry-specific deficiencies of the standard GB model by
its inaccuracies arising from finite εout.36 The dielectric
constant of the solute region was set to 1; a parallel set of
reference calculations was performed with a spatially uniform
dielectric constant of 1 to determine the gas-phase charge
discretization reference energy. The self-energy of each atom
was calculated by subtracting the reference energy from the
solvated energy from the most focused grid. Radii were
calculated from self-energies using the Born equation.
MEAD 2.2.5 with double precision and otherwise default
parameter settings is used as the reference PB solver in Table
7. The dielectrics are as described above. Six focusing steps
are used with the coarsest cubic grid having 81 points in
each direction and 3.2 Å grid spacing, and the finest grid of
315 points in each direction and 0.1666 Å spacing.67

The set of apo-myoglobin structures was prepared from
the holo-Mb coordinate set [Protein Data Bank (PDB) ID:
2mb5] by heme removal and simulated acid unfolding in
explicit solvent, as described elsewhere.68 The native state
is represented by 50 consecutive snapshots (2 ps apart from
each other) with near-native radius of gyration, ∼16 Å taken
from the beginning of the acid-unfolding simulation. The
unfolded state is represented by 50 consecutive snapshots
from the end of that simulation, at which point the radius of
gyration has approached ∼30 Åsas is experimentally
observed in the unfolded state.69 Protein-A structures were
prepared from the NMR average coordinate set (PDB ID:
1BDD, residues 10-55). The native-state ensemble is
represented by 50 consecutive snapshots (2 ps apart from
each other) from the implicit solvent simulation protocol
described below, and deviations from the native coordinates
are less than 2 Å for CR atoms. The unfolded state was
prepared by heating the protein to 450 K for 1 ns in an
implicit solvent environment (Onufriev, unpublished data),
and 50 consecutive snapshots with average RMSD from the
native structure of no less than 15 Å were chosen to represent
this state. The PB solvation energies of the denaturation
process of apo-myoglobin and protein A were computed
using DELPHI-II64 with a cubic box and a grid spacing of

0.5 Å. The dielectric constant for the protein interior is 1,
and the ionic strength is zero.

The surface triangulation used in the NSR6 procedure and
the computation of “chunks” contribution were carried out
using the MSMS package53 using a probe radius of 1.4 and
triangle density of 10.

The structures of the 17 “challenging” small molecules
were taken from the supporting material of ref 63. The R6
radii of this molecules were obtained with the NSR6
procedure, and the values of SASA for each structure were
computed by using the MSMS package. In both cases, a
triangle density of 15 and probe radius of 1.4 have been used.
The values of ∆Gel are calculated by eq 2 with εout ) 80, εin

) 1, and the ionic strength set to zero. For the computation
of ∆GvdW, the values of ai in eq 27 are computed by the
following expression:33

where dw ) 0.033428 Å-3 is the number density of water at
standard conditions; εiw and σiw are computed by

where σw ) 1.7683 Å and εw ) 0.1520 kcal/mol are the
Lennard-Jones parameters of the TIP3P water oxygen. σi and
εi are the Lennard-Jones parameters for atom i. The values
of σi and εi for each atom type were taken from AMBER 8
and are presented in Table 10.
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Abstract: The ion size-modified Poisson-Boltzmann equation (SMPBE) is applied to the simple
model problem of a low-dielectric spherical cavity containing a central charge in an aqueous
salt solution to investigate the finite ion size effect upon the electrostatic free energy and its
sensitivity to changes in salt concentration. The SMPBE is shown to predict a very different
electrostatic free energy than the nonlinear Poisson-Boltzmann equation (NLPBE) due to the
additional entropic cost of placing ions in solution. Although the energy predictions of the SMPBE
can be reproduced by fitting an appropriately sized Stern layer, or ion-exclusion layer to the
NLPBE calculations, the size of the Stern layer is difficult to estimate a priori. The SMPBE also
produces a saturation layer when the central charge becomes sufficiently large. Ion competition
effects on various integrated quantities, such the total number of ions predicted by the SMPBE,
are qualitatively similar to those given by the NLPBE and those found in available experimental
results.

Introduction

Numerous processes involving the folding, bending, melting,
and binding of highly charged biopolyelectrolytes, which are
vital for biological function, are strongly influenced by
changes in the ionic solvent environment. Nonspecific salt-
mediated electrostatic interactions play an important role in
these biomolecular processes because of their long-range
influence, and such interactions largely govern the complex
salt-dependent behavior of the above-mentioned processes.
Therefore, physically realistic models of these long-range
and salt-mediated electrostatic interactions are essential to
predict the physiochemical behavior of charged biomacro-
molecules in ionic solutions.

Because of its simplicity and ability to accurately predict
many thermodynamic properties, the nonlinear Poisson-
Boltzmann equation (NLPBE)1-4 has been extensively used
to model the ionic solvent environment of biomolecules.
Despite this success, it is subject to well-known approxima-
tions, such as omitting finite ion size and ion-ion correlation
effects, which prohibit its application to systems where these
effects become pronounced such as ionic layering, over-
charging, or charge inversion, like-charge attraction, and ion
selectivity inversion, all of which are associated with highly
charged macroions, usually under high-salt conditions or in
the presence of multivalent ions.5-11

Addressing these approximations within the Poisson-
Boltzmann approach while retaining its simplicity is therefore
desirable. As a result, several investigators have formulated
various corrections to the NLPBE in order to include the
effects of ion-ion correlations,12 a dipolar solvent with
variable density,13 and other effects14 in an effort to account
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for the above-mentioned intriguing experimentally observed
phenomena.

Experimental studies have shown that even for small
inorganic ions at intermediate- to high-salt concentrations,
ion size effects cannot be ignored in quantitative predictions
of nanopore selectivity at high surface charge densities.15

In light of such experimental observations, several methods
have been developed to address the effects of finite ion size;
one of the first being the use of an ion-exclusion region or
“Stern layer” surrounding the charged biomolecule where
ions are not permitted to penetrate.16 Others include using a
cutoff on the maximum local salt concentration,17 Coulomb
gas with finite size,18 modified Poisson-Boltzmann based
on the generalized Poisson Fermi formalism,19 lattice
statistics models,20-22 equation of state coupled to a function
integral representation for a hard sphere fluid mixture
approach,23 and Bogoliubov-Bom-Green-Yvon hierarchy
by Outhwaite and co-workers.24,25

In this paper, we chose to investigate the lattice gas-based
method because it provides a physically realistic model that
can be extended to the case of nonuniform ion sizes, without
increasing the computational complexity of the original
Poisson-Boltzmann solution. The predictions of one such
theory, the uniform ion size-modified Poisson-Boltzmann
equation (SMPBE)20,21,26 are compared with those of the
traditional NLPBE with and without an ion-exclusion region.
The uniform ion size MPBE is implemented for a low-
dielectric spherical cavity with a central charge embedded
in an aqueous salt solution. The mathematical details of this
uniform ion SMPBE model are described in the Appendix,
and its numerical implementation is discussed in the Methods
section.

The most popular method of accounting phenomenologi-
cally for the excluded volume or steric effects in the NLPBE
relies on using a Stern layer, or ion-exclusion region. Its use
is motivated by reasoning that ions will not come within
their van der Waal’s radius of the biomolecule, an observa-
tion that has been confirmed by different Monte Carlo
simulations27,28 of ionic distributions around biomolecules.
However, this approximate model provides a limited repre-
sentation of finite ion size effects and, as will be shown later,
does not reproduce the predictions of the SMPBE. Some
investigators29 have used a Stern layer in conjunction with
the SMPBE but doing so is an effective overcounting of the
observed lack of ion centers within their atomic radius of
the molecular surface because in the SMPBE an ion with its
atomic center at that distance would still contribute charge
density at the molecular surface because of the ion’s finite
size.

Unfortunately, as will be discussed below, current experi-
mental data29-32 are insufficient to conduct a decisive
validation of these models since they have generally mea-
sured global or integrated (over the entire space) properties,
such as the number of bound counterions, which are
essentially identical for all of the candidate models. To
determine which of these competing methods is best,
experimental probes of local properties must be devised to
measure, say, the forces between charged biomolecules at

short separation distances, whose predictions would be
sensitive to modeling choice.

Methods

Nonlinear Poisson-Boltzmann Equation. In the NLPBE,
the normalized electrostatic potential φ ) e�/kbT of a
biomolecule immersed in an ionic solvent obeys

where ε(r) is the dielectric constant, e is the protonic charge,
kb is the Boltzmann constant, and T is the absolute temper-
ature of the ionic solution. The charge density FNLPBE(r) in
the solute, ion-exclusion, and solvent regions (respectively,
Ω1, Ω2, and Ω3) is given by

In eq 2 Qi is the discrete charge of the solute at position ri,
and zk

( and cbk
( are the valence and the bulk concentration

for both the co-ion and the counterion, respectively. The
region Ω2 is frequently modified by setting Fion to 0 in the
vicinity of the molecular surface, creating the Stern layer or
ion-exclusion region.

In the case of small electrostatic potentials, φ , 1, eq 1
in region Ω3 reverts to the well-known linearized PBE:

where the Debye-Hückel screening parameter, κ, is given
by κ2 ) (4πe2/kbTεext)∑k)1

nsalt{cbk
+(zk

+)2 + cbk
-(zk

-)2}, and εext is
the dielectric constant of the solvent.

Uniform Ion Size-Modified Poisson-Boltzmann
Equation. To account for the uniform finite size of ions,
the NLPBE can be modified as in the lattice gas model.20 In
this model, each ion is assumed to occupy a cube of volume
a3, where a is twice the radius of the ion, rion, and all of the
ions in the solution have equal radii. The mobile ion density
in the exterior region Ω3 is therefore modified to20

where �(r) ) ∑k�k(r), and the volume exclusion factor of
the ith ion is given by

In both the NLPBE and the SMPBE, the electrostatic free
energy Felec can be expressed as the sum of three terms. In
the SMPBE, this can be written as

∇ · ε(r)∇� + 4πe
kbT

F(r) ) 0 (1)

FNLPBE(r) )

{Ff ) ∑
i

Qiδ(r - ri), r ∈ Ω1

0, r ∈ Ω2

Fion ) e∑
k)1

nsalt

{zk
+cbk

+ exp( - zk
+�) - zk

-cbk
- exp(+zk

-�)}, r ∈ Ω3

(2)

∇2� ) κ
2� (3)

FSMPBE(r) ) FNLPBE(r)
1 + �(r)

(4)

�i(r) ) a3{cbi
+ exp(-zi

+�(r)) + cbi
- exp(zi

-�(r)) - (cbi
+ + cbi

-)} (5)
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where the first term is the electrostatic stress, and the third
term, denoted by ∆ΠSMPBE, is the osmotic pressure whose
NLPBE counterpart is

which is readily obtained in the limit a f 0. Note that
∆ΠSMPBE, unlike ∆ΠNLPBE, is not separable into contribu-
tions from individual ions because these contributions
combine nonlinearly in the logarithm. This means that the
well-known relationship between ∆Π and the derivative of
the electrostatic free energy with respect to log(cb) available
for the NLPBE:

does not hold in the SMPBE. However, an expression for
this derivative is nevertheless available and is given by (see
Appendix)

A simple relationship can be found between FSMPBE and
FNLPBE in the limit of small � by writing:

In the limit of �(r) , 1, eq 10 simplifies to

where this integral is taken over Ω3, and it is assumed that
�(r) ) a3f(r), where f(r) is independent of a to the first order
(see Appendix). This approximation does not hold when a
saturation layer of counterions forms near the surface of the
sphere, so eq 11 will not apply in these cases.

In ionic solutions, a charged biomolecule alters the
distribution of counter- and co-ions by attracting a cloud of
counterions and repelling co-ions. The number of excess
counterions attracted to the biomolecule, νk, is experimentally
accessible.29,30 Given a solution to either the NLPBE or the
SMPBE, this number can be obtained from the following
expression:

Numerical Implementation of the 1D Uniform Ion
SMPBE. Here the case of a low-dielectric spherical cavity
containing a central charge and surrounded by ionic solution
is considered. This simple spherical configuration is direc-
tionally invariant, with the solution depending solely on the
radial coordinate r and with the origin at the center of the
low-dielectric spherical cavity. Therefore, eq 1 reduces to
the 1D NLPBE equation:

A discrete approximation to this equation is easily developed
using either finite difference or finite element methods and
results in high-resolution solutions. The following results use
an approximation1 previously developed for solving the
NLPBE, extended here by modifying the source term to
account for uniform finite ion size as in eq 4 and by
incorporating the boundary treatment described in Boschitsch
and Fenley,33 which applies to both the linear and the
nonlinear PBE and requires only that the potential at the outer
boundary be small, |φ| , 1. Correction terms are also added
to the calculated electrostatic energies and salt gradients to
account for contributions from outside the computational
domain. These terms can become important, especially at
lower salt concentrations.

The calculations presented here used 5000 nodes and an
outer boundary placed at 200 Å from the surface of the
sphere of radius 20 Å. The solution was considered to have
converged when the maximum change in potential at a grid
node was less than 10-5*min{1, |φs|} where φs is the surface
potential. To verify that results were both converged and
accurate, additional calculations were conducted for randomly
selected cases to ensure that no significant changes occurred
when: (i) the mesh resolution was halved and (ii) a smaller
convergence criterion was used. The derivatives of the
electrostatic free energy with respect to bulk concentration
and to ion size were also verified by using finite difference
methods.

Results

Unless specified otherwise all results were generated for a
spherical cavity of radius 20 Å containing a central charge
of -50 e. The ion radius is equal to one-half of the size of
the lattice spacing (a) used in the SMPBE. It is set to values
between approximately 1 to 8 Å. The Stern layer is not
invoked for the SMPBE calculations. However, as noted in
the text below for some NLPBE calculations, a Stern layer
is employed. The dielectric constant was set to 78.5 in the
exterior region (Ω2 ∪ Ω3) and 4 inside the molecule (Ω1).
All calculations were performed at 298.15 K.

Ion Competition Effects on Global Thermodynamic
Properties. The behavior of many highly charged biomol-
ecules, such as nucleic acids, is highly influenced by changes
in ionic conditions due to the presence of neutralizing
counterions that form a characteristic ionic cloud surrounding
the charged biomolecule. Moreover, many vital biological
processes occur in salt mixtures and involve changes in
competition effects between monovalent and multivalent
ions.34,35

FSMPBE ) ∫
V

d3r( - ε|∇φ(r)|2

8π
+ Ff

φ(r) -

kbT

a3
ln(1 + �(r))) (6)
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V

d3r ∑
k
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- exp(-zk

+�(r)) +

zk
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-)} (7)
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kbT
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V

d3r
�k(r)
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(9)

dFSMPBE

da
) 3
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k

cbk
dFSMPBE

dcbk
+ ∆ΠSMPBE) (10)

log(FSMPBE - FNLPBE) ) 3 log(a) + log(1
2

kbT∫
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f2(r)d3r)
(11)
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V

cbk
((exp(-zk

(�)
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d
dr(ε(r)r2d�

dr ) + 4πe
kbT

r2F(r) ) 0 (13)
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Because the SMPBE models ions differently than the
NLPBE, its predictions of competition effects between
different ion species may differ from those of the classical
NLPBE. This is investigated in Figure 1 which plots FSMPBE

against [NaCl] for different values of [MgCl2]. For increasing
[MgCl2], the resulting curves exhibit gradual flattening with
decreased slopes. This reflects the Mg2+ counterions com-
peting the Na+ ions away from near the surface of the
molecule. These curves have the same qualitative form as
similar curves for the NLPBE, as shown by Shen and Honig,2

Boschitsch and Fenley,1 and Figure A.1. in the Supporting
Information, and therefore there is no clear difference
between the ion competition effects predicted by the NLPBE
with or without the Stern layer and those predicted by the
SMPBE, at least for the integrated quantities considered here.

That the SMPBE produces similar predictions for ion
competition effects on global thermodynamic properties of
the low-dielectric spherical cavity to those of the NLPBE
can be further demonstrated by examining Figure 2, where
υMg, υNa, and υCl are plotted against log([MgCl2]) for NaCl
) 0.1 M. These curves are qualitatively similar to the
comparable curves generated by Lipfert and co-workers,26,30

which included the 3D structure of actual biomolecules. This
behavior indicates that, as they discussed, the inclusion of
accurate 3D structures does not significantly change the
predictions of ion competition effects for such integrated
quantities. Once again, the ion competition effects of
thermodynamic parameters predicted by the SMPBE are in
close agreement with the NLPBE’s predictions. In these
calculations and others we have carried out (though by no
means exhaustive), we have generally found that both the
NLPBE’s and SMPBE’s predictions of global or integrated
quantities are in good agreement. However, the ion sizes
considered here (sodium and magnesium), are comparatively
small (radii are on the order of 1 Å), whereas, as was pointed
out by Chu and co-workers,29 if a much larger ion radius is
considered (on the order of 10 Å), then the equivalent ion
competition curves of global properties predicted by the
SMPBE are found to differ significantly from those of the

NLPBE. Exploring the validity of the SMPBE may therefore
be possible by conducting experiments with much larger ions,
such as polyamines (spermine and spermidine).19 Note that
increasing the charge on the biomolecule does not seem to
increase the difference between the predictions of the
traditional NLPBE and those of the SMPBE, as is evident
from the Figure A.2. in the Supporting Information. Increas-
ing the charge of the biomolecule therefore does not appear
to be a viable experimental method for investigating the
effects of the SMPBE. Although the NLPBE results in this
figure use a Stern layer, the figure appears nearly identical
when a Stern layer is not used, so the presence or absence
of a Stern layer does not alter these conclusions.

Electrostatic Free Energy and its Salt Sensitivity. As
mentioned before, any process (e.g., folding, stability, and
binding) involving highly charged biopolyelectrolytes is
affected by changes in salt concentration.36 Here we examine
how the electrostatic free energy and its salt sensitivity
obtained with the SMPBE differ from that of the standard
NLPBE.

The electrostatic free energy FSMPBE differs from FNLPBE

due to the additional entropic energy cost of displacing
solvent when placing ions in solution and the different
electrostatic potentials predicted by the SMPBE. Equation
11 indicates that to first order the difference, FSMPBE -
FNLPBE is proportional to a3 under conditions where no
saturation layer forms. This is illustrated in Figure 3 where
log(FSMPBE - FNLPBE) for the low-dielectric spherical cavity
in a 1:1 salt solution is plotted against log(rion) (a ) 2rion)
for different concentrations of [NaCl]. The curves in this
plot are linear, and their slopes are very close to the expected
value of 3. Interestingly, although FSMPBE depends upon
[NaCl], FSMPBE - FNLPBE is essentially independent of
[NaCl] in the absence of a saturation layer. Despite the high
charge of the sphere, the difference between the electrostatic
energies predicted by SMPBE and NLPBE is less than kbT.
This indicates that distinguishing between SMPBE and

Figure 1. The electrostatic free energy (in kbT) computed
with the uniform ion size-modified Poisson-Boltzmann equa-
tion, FSMPBE, of a low-dielectric spherical cavity of radius 20
Å and a central charge of -50 e at concentrations of 2:1 salt,
[MgCl2], of 0, 0.01, 0.02, 0.05, and 0.1 M and an ion radius
of 1.5 Å is plotted against the logarithm of the concentration
of 1:1 salt, [NaCl].

Figure 2. The number of bound Mg2+, Na+, and Cl- ions
(υMg, υNa, and υCl) for a mixed salt solution, with an ion radius
of 1.4 Å and a 1:1 NaCl salt concentration fixed at 0.1 M,
calculated with both the nonlinear Poisson-Boltzmann equa-
tion (∆, 0, O) and the size-modified Poisson-Boltzmann
equation ( ×, ], +) is plotted as a function of MgCl2 salt
concentration ([MgCl2]). The NLPBE calculations were per-
formed with a Stern layer of 1.4 Å thickness.
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NLPBE predictions on the basis of experimental solvation
free energies is unlikely.

One important difference between the NLPBE and the
SMPBE can be seen in the osmotic pressure term, ∆Π. In
the NLPBE, ∆Π is equal to -dFNLPBE/d log(cb), as shown
by Sharp and co-workers.37 This relationship does not hold
in the SMPBE because adding an ion to the solvent displaces
solvent molecules, introducing an additional entropic cost
to ∆Π. This additional entropic cost of placing an ion in
solution explains the result, discussed by Chu and co-
workers,29 that the NLPBE underestimates the preference
that biomolecules have for magnesium counterions over
sodium counterions. Because the magnesium ions have
roughly the same size as the sodium ions, placing one
magnesium ion costs less entropy than placing two sodium
ions, thereby increasing the predicted affinity of biomolecules
for magnesium in the SMPBE. The additional entropic cost
of placing ions introduced in the SMPBE means that,
although dFSMPBE/d log(cb) depends only weakly on rion, ∆Π
is very sensitive to changes in this parameter. This is clear
from Figure 4, where ∆ΠSMPBE and -dFSMPBE/d log(cb) are
plotted against ion size rion. ∆ΠSMPBE )-dFSMPBE/d log(cb)
when rion ) 0 but quickly diverges for larger values of rion,
while dFSMPBE/d log(cb) remains relatively constant.

Traditionally, a Stern layer has been added to the NLPBE
to approximate ion size effects by reasoning that the main
effect of a finite ion size is to exclude ions from the
immediate vicinity of the charged biomolecule. To test this
assertion, both FSMPBE as a function of rion and FNLPBE as a
function of the thickness of the Stern layer are plotted in
Figure 5. The two electrostatic energies diverge with
increasing rion, because the NLPBE with a Stern layer
overestimates the change in electrostatic free energy with
ion size. The predictions of the salt dependence of the free
energy by the two models are also different, as is clear from
Figure 6, where the dependence -dFSMPBE/d log(cb) on ion
size is given with the same parameters as in Figure 5. While
it may be possible to adjust the Stern layer size to match the
SMPBE’s predictions, how to perform this adjustment in an

a priori manner for general bimolecular configurations and
ionic conditions is not obvious. Note further that the
disparities in the slopes of the curves in Figures 5 and 6 at
a ) 0 point to a fundamental physical modeling discrepancy
in how finite ion size is accounted for. Specifically, the
SMPBE model indicates an O(a3) dependence on F near a
) 0, whereas the NLPBE model with a Stern layer reflects
an O(a) behavior. The former variation is expected on the
basis of a volume-based exclusion effect, whereas the latter
behavior reflects the distance-based exclusion characteristic
of the Stern layer.

It will be important to examine if the salt dependence of
various thermodynamic properties of biopolyelectrolytes in
salt mixtures can be better explained or predicted using the
more accurate SMPBE, with nonuniform ion size, as opposed
to using the NLPE with the Stern layer. Future studies should
address this point for realistic biopolyelectrolytes for which
thermodynamic salt-dependent data are available in the
literature.

Saturation Layer. One feature that the SMPBE is able
to capture is the presence of a saturation layer around the

Figure 3. The logarithm of the difference between the
electrostatic free energy (in units of kbT) given by the uniform
ion size-modified Poisson-Boltzmann equation and that given
by the standard nonlinear Poisson-Boltzmann equation
without a Stern layer, log(FSMPBE - FNLPBE), is plotted against
log(rion) for three different values of NaCl concentration. The
slopes of the curves are 3 to within 0.67%.

Figure 4. The excess osmotic pressure, ∆ΠSMPBE computed
using the uniform ion size-modified Poisson-Boltzmann
equation, SMPBE, and its derivative with respect to the
logarithm of the bulk 1:1 salt concentration, -dFSMPBE/
d log(cb), are plotted against ion size rion, where rion is equal
to one-half of a, the size of the lattice spacing used in the
SMPBE theory.

Figure 5. The electrostatic free energy predicted by the
uniform ion size-modified Poisson-Boltzmann equation,
FSMPBE, as a function of the ion radius, rion, and the electro-
static free energy predicted by the standard nonlinear
Poisson-Boltzmann equation, FNLPBE, as a function of the
thickness of the Stern layer.
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biomolecule. Essentially, as the local potential increases, the
density of ions reaches a nonzero saturation concentration,
which it cannot exceed because of the finite size of the ions.
This contrasts with the standard NLPBE, with or without
the use of Stern layer, which allows the concentration of
ions to increase without bound and reaches physically
implausible values in the vicinity of the charged interface.
This behavior is illustrated in Figure 7, where the local
concentration of counterions is plotted as a function of the
distance from the surface of the low-dielectric spherical
cavity. In this case the 1:1 salt solution has concentration
[NaCl] ) 0.01 M. The ion radius is 3.5 Å, and the central
charge of the spherical cavity is varied. For a sufficiently
large central charge, the counterions form a layer with a
saturated ion density before falling off monotonically and
rapidly to the bulk ion concentration. This same behavior
was captured by Outhwaite and co-workers using a more
sophisticated theory.38 Interestingly, this figure indicates that
the saturation layer will form even at very low salt
concentrations (0.01M) provided the charge of the sphere is
sufficiently large, and indeed, a saturation layer will develop
at all nonzero salt concentrations for sufficiently high central
charges. This behavior agrees with observations that have

been made in other studies for other geometries, including
charged cylinders and parallel plates.21,22,39 Future experi-
mental, simulation, and theoretical studies should confirm
the existence of this saturation layer and examine its
implications to other physical properties of arbitrary shaped
biopolyelectrolytes under varying ionic conditions, including
salt mixtures.

Conclusions

The influence of finite ion size was assessed on the basis of
the size-modified Poisson-Boltzmann equation (SMPBE)
applied to a low-dielectric spherical cavity containing a
central charge and compared against the standard nonlinear
Poisson-Boltzmann equation (NLPBE) in the context of
competition effects between ion species and the salt depen-
dence of the electrostatic free energy. It is found that the
predictions of ion competition effects given by the SMPBE
do not differ significantly from those of the NLPBE for the
global quantities considered here. However, the SMPBE
predictions may differ from those of the NLPB for ion
distribution profiles of highly charged 3D biomolecules in
salt mixtures, especially at and near to the highly charged
3D biomolecular surface.

Although SMPBE does not yield significantly different ion
competition effects than NLPBE, it does produce different
electrostatic free energy predictions. In particular, although
dFSMPBE/d log(cb) closely matches the predictions of the
classical NLPBE, ∆Π gains an additional entropic energy
term from the displacement of solvent upon the placement
of ions in solution that is very sensitive to changes in the
ion radius. This means that, unlike in NLPBE, ∆Π predicted
by the SMPBE is not equal to -dFSMPBE/d log(cb), as shown
in the Appendix. Unfortunately, the electrostatic free energy
is not directly accessible to experiment, making it impossible
to examine the difference between the SMPBE’s predictions
of the free energy and those of the NLPBE.

The SMPBE predicts the formation of a saturation layer.
When the central charge on the biomolecule is large enough
to create a field that would normally cause the local ion
concentration predicted by the NLPBE to exceed the satura-
tion concentration, the SMPBE instead shows the presence
of a saturation layer for various geometries including the
charged sphere, cylinder, and infinite plate.20,22,39,40

We also sought to determine whether these effects of the
SMPBE could be approximated by the NLPBE with a Stern
layer, but as we demonstrated, these two models predict very
different behaviors. Although the SMPBE does not include
such effects as ion-ion correlations, it has a more rigorous
foundation in statistical mechanics than the NLPBE with and
without a Stern layer, and it therefore appears to be a
preferable method for including the effects of ion size. The
ion distributions can be different to that of the uniform
SMPBE when ions with different charges and radii are
present in the ionic solution. By using a nonuniform ion
SMPBE based on the generalized Poisson-Fermi approach,
Tresset and co-workers41 predicted ion stratification around
a uniformly charged plane. The proper modeling of biopo-
electrolytes in salt mixtures will require nonuniform ion
SMPB solvers. In order to verify the robustness of such

Figure 6. The derivative of the electrostatic free energy
predicted by the uniform ion size-modified Poisson-Boltzmann
equation with respect to the logarithm of the bulk concentration
of 1:1 salt, -dFSMPBE/d log(cb), as a function of the ion radius,
rion, and the equivalent quantity predicted by the classical
nonlinear Poisson-Boltzmann equation, -dFNLPBE/d log(cb),
as a function of the thickness of the Stern layer.

Figure 7. The local concentration of Na+, c(r), outside a low-
dielectric spherical cavity in a 1:1 salt solution with [NaCl] )
0.01 M and an ion radius of 3.75 Å for different central charge
values.
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nonuniform SMPB solvers, it will require the availability of
pertinent experimental and simulation data. Unfortunately,
comparing the predictions of the SMPBE to experimental
findings was impossible in the present paper because the code
used could not use a realistic 3D molecular surface. This
capability will be implemented shortly, and the results will
be presented in a future publication. However, the results
presented in this paper should also pertain to calculations
performed on realistic molecular surfaces.
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Appendix

Electrostatic Free Energy. The electrostatic free energy,
FSMPBE, of the SMPBE model can be expressed as the
integral over the entire domain:

where the first term is the electrostatic stress, the third term
is the excess osmotic pressure term, ∆Π, ε is the dielectric
constant, � is the electrostatic potential, Ff is the biomolecule
charge distribution, and ∆Π is the excess osmotic pressure
of the mobile ion cloud. In the SMPBE, ∆Π is given by:20

where the domain of integration in eq 15 is the region Ω3.
C is the fraction of the local volume taken up by ions in the
presence of the biomolecule, and C0 is the same quantity in
the absence of the biomolecule:

Here ck
+ and ck

- are the local concentrations of the kth ion
species in the presence of the biomolecule, and cbk

+ and cbk
-

are the local concentrations in the absence of the biomolecule.
In the SMPBE, ck

( is given by:20

where �(r) ) ∑k�k(r) and

where zk
+ and zk

- are the valences of ions A and B.

Salt Gradient of the Electrostatic Free Energy. The salt
gradient of the electrostatic free energy, (dFSMPBE)/(dcbi) is
defined as the derivative of the free energy with respect to
the bulk concentration of salt. To compute this quantity, first
take the variation of the electrostatic free energy term in eq
14:

From this equation, the salt gradient of the electrostatic free
energy is:

where the ion distribution Fion is given by:

and the surface integral term is given by:

The second term of eq 21 is 0 because it is a restatement of
the PBE. The fourth term can be rewritten by combining
eqs 16-19 as:

Therefore the salt gradient of the electrostatic free energy
for the ith ion species is given by:

By assuming that the charge neutrality condition for salt AxBy

requires that cbi
+zi

+ ) cbi
-zi

- and that the salt completely
dissociates in the solvent, we get cbi:cbi

+:cbi
- ) 1:x:y.

By calculating the derivative of �(r) with respect to cbi

and using eq 22, further simplification is possible:

FSMPBE ) ∫
V

d3r( - ε|∇φ|2

8π
+ Ff

φ)-∆Π (14)

∆ΠSMPBE ) -∫
Ω3

kbT

a3
ln( 1 - C

1 - C0
)d3r (15)

C ) a3 ∑
k)1

Nsalt

(ck
+ + ck

-) (16)

C0 ) C(� ) 0) ) a3 ∑
k)1

Nsalt

(cbk
+ + cbk

- ) (17)

ck
( ) cbk

( exp(-zk
(�)

1 + �(r)
(18)

�k(r) ) a3{cbk
+ exp(-zk

+�) + cbk
- exp(zk

-�) - (cbk
+ + cbk

- )}
(19)

δFSMPBE ) ∫
V

-∇(δφ) · ε
4π

∇φ + Ffδφ +
kbT

a3
δ ln( 1 - C

1 - C0
)d3r

)

∫
V

- ∇ · ( ε
4π

δφ∇φ) + δφ∇ · ( ε
4π

∇φ) +

Ffδφ +
kbT

a3
δ ln( 1 - C

1 - C0
)d3r

(20)

dFSMPBE

dcbi
) Si + ∫

V

dφ

dcbi
(∇ · ε

4π
∇φ + Ff + Fion) -

Fion dφ

dcbi
+

kbT

a3

d
dcbi

ln( 1 - C
1 - C0

)d3r (21)

Fion ) e ∑
k)1

Nsalt

ck
+zk

+ exp(-zk
+�) - ck

-zk
- exp(zk

-�) (22)

Si ) -∫
S∞

ε
4π

dφ

dn
dφ

dcbi
dS (23)

ln( 1 - C
1 - C0

) ) -ln(1 + �(r)) (24)

dFSMPBE

dcbi
) Si + ∫

V

- Fion dφ

dcbi
-
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a3(1 + �(r))

d�(r)
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d3r

(25)
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where the salt gradient of the electrostatic free energy
contains a normalization constant 1 + �(r).

At finite salt concentrations, the surface integral term, Si,
is 0 because the exponential decay in the potential guarantees
that the integrand is 0 at ∞, but in the limit of zero salt
concentration, this is not true, and Si diverges. This difficulty
is avoided by considering instead the derivative of the
electrostatic free energy with respect to log(cb) (cb

1/2 is
another useful choice yielding finite derivatives) to obtain:

The product cbiSi now vanishes as cbi f 0. To prove this,
note that at a large distance, R, the potential is sufficiently
small so that the local behavior in the region r > R is
governed by the linear PBE. Thus, the potential solution
behaves as:

where B is a constant and

The derivative of � with respect to κ is given by:

and its derivative with respect to r is given by:

Inserting into eq 23:

The last term in braces is bounded by 1 so that:

The derivative of κ with respect to cbi is:

so that:

where D ) √πe2zi
+zi

-(zi
+ + zi

-) / kbTε
Substituting into the result for cbi|Si| confirms the conver-

gence with zero concentration, cbi.
Dependence of the Electrostatatic Free Energy on

Ion Size. At small salt concentrations, the difference between
the free energy predictions of the SMPBE and those of the
NLPBE are dominated by the additional entropic cost of
placing an ion in solution in the SMPBE model. By
considering the derivative of electrostatic free energy with
respect to a, dFSMPBE/da, a formula relating FSMPBE to
FNLPBE in the limit of small salt concentrations can be
derived as follows:

where M ) - ∫S∞ ε / 4π dφ / dn dφ / dadS.
Because the electrostatic potential has the asymptotic form

exp (-κr)/r, M ) 0 and the second term on the right-hand
side of eq 36 is 0 because it is the SMPBE equation. By
calculating the derivative of �(r) with respect to a and using
eq 15, eq 36 can be further simplified to:

By considering the limit of small �(r), we can derive a
relationship between FSMPBE and FNLPBE. The Taylor series
expansion of eq 37 for small � is:

Expanding �(r) to lowest order gives �(r) ) a3f(r), where
f(r) does not depend on a (see Supporting Information
Materials). By retaining only the �2(r) term, this equation
becomes:

Integrating:
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demonstrating that (FSMPBE - FNLPBE) is proportional to
a3.

Supporting Information Available: Graph showing
the electrostatic free energy of a low-dielectric spherical
cavity in a mixed salt solution computed with the nonlinear
Poisson-Boltzmann equation. Graphs illustrating the effect
of increasing the charge of the low-dielectric charged
spherical cavity embedded in ionic solution for the example
in Figure 2. The volume integration used in the derivation
of the salt gradient of the electrostatic free energy. The Taylor
series of electrostatic potential used in estimating the
dependence of electrosatic free energy on ion size. This
information is available free of charge via the Internet at
http://pubs.acs.org/.
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Abstract: All-atom unbiased molecular dynamics simulations are now able to explore the
microsecond to millisecond time scale for simple biological macromolecules in an explicit solvent.
This allows for a careful comparison of the efficiency and accuracy of enhanced sampling
methods versus long unbiased molecular dynamics in reconstructing conformational free energy
surfaces. Here, we use an equilibrium microsecond-long molecular dynamics simulation as a
reference to analyze the convergence properties of well-tempered metadynamics with two
different sets of collective variables. In the case of the small and very diffusive Met-enkephalin
pentapeptide, we find that the performance strongly depends on the choice of the collective
variables (CVs). Using a set of principal component analysis derived eigenvectors, the
convergence of the FES is faster than with both hand-picked CVs and unbiased molecular
dynamics.

1. Introduction

Nowadays, thanks to specialized hardware1 and grid
computing,2,3 it is increasingly possible to study relevant
biological events including folding, molecular recognition,
and conformational plasticity with long unbiased all-atom
molecular dynamics (MD) simulations. Assuming ergodicity
of the systems under study, these long runs can be used to
calculate both kinetics and thermodynamics observables in
simple systems as fast-folding proteins or small peptides.
So far, due to the time-scale problem, these physical
properties could only be obtained, with meaningful statistics,
by enhanced sampling or coarse-grained methods.4-20 This
is still true for more complex systems having higher free-
energy barriers and characteristic times of multiple mil-
liseconds to seconds. Enhanced sampling methods are
generally based on some assumptions on the underlying
system, such as the choice of meaningful collective variables
or the definition of an initial and final state. Thus, a
comparison of the relative performance, e.g., in terms of the
convergence and accuracy of the reconstructed free energy

surfaces, obtained with the two approaches is now important
and increasingly urgent.

The goal of the present paper is to compare well-tempered
metadynamics,17,21 a widely used enhanced sampling method,
with a long unbiased MD in terms of the convergence of
the reconstructed free energy surface (FES). We will look
at the relative computational efficiency, and at the effect of
the choice and number of the collective variables (CVs) on
it. In particular, we will see how a general set of collective
variables automatically generated leads to a fast and accurate
reconstruction of the free energy surface.

Our model system of choice is the Met-enkephalin, a
pentapeptide involved in regulating nociception in the body
by binding to the opioid receptors. Due to its extreme
flexibility, the native structure of Met-enkephalin has been
elusive experimentally.22,23 A variety of computational
approaches have been used to explore its conformational
landscape.24-28 Our choice was guided both by its small size
and by the nature of its conformational free-energy surface.
The peptide is sufficiently small to allow for an extensive
unbiased all-atom explicit solvent MD simulation. Still, its
free-energy surface is complex and well-structured. What is
more, the small height of the free energy barriers and the
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diffusive behavior of its dynamics pose an additional
challenge to free-energy-based methods like well-tempered
metadynamics that generally perform better in the presence
of high free energy barriers and ballistic dynamics.

2. Computational Methods

The simulations were performed using version 4 of
the molecular dynamics program GROMACS29 with the
Amber03 force field.30 The Met-enkephalin, with sequence
YGGFM, is solvated in 1256 tip3p water molecules31

enclosed in a cubic box of 38.9 nm3 under periodic boundary
conditions. The van der Waals interactions were cut off at
1.4 nm, and the long-range electrostatic interactions were
calculated by the particle mesh Ewald algorithm32 with a
mesh spaced 0.12 nm. The neighbor list for the nonbonded
interactions was updated every 0.02 ps. The system evolves
in the canonical ensemble, coupled with a Nosé-Hoover
thermal bath33,34 at T ) 300 K and a time step of 2 fs.

The solvated system was prepared using the following
steps: (1) a steepest descent energy minimization; (2)
equilibration of the system for 10 ps; (3) a density equilibra-
tion with a 2 ns dynamics at 300 K and constant pressure,
coupling the system to a Parrinello-Rahman barostat;35 and
finally (4) another 2 ns dynamics at 300 K with a Berendsen
thermostat36 at constant volume to thermalize the system.

We used the well-tempered variant of the metadynamics
enhanced sampling technique37 in which the evolving bias
V(s,t) at time t and CV value s is built by the sum of
Gaussian-shaped potentials with decreasing height. Such an
algorithm, introduced by Barducci et al.21 for the alanine
dipeptide, has been proven more efficient than original
metadynamics, guaranteeing the convergence of the free
energy surface at a long time limit. According to the well-
tempered metadynamics prescription, a Gaussian is deposited
every 4 ps with height W ) W0 e-V(s,t)/fT, where W0 ) 2
kJ/mol is the initial height, T is the temperature of the
simulation, and f ) 1.5 is the bias factor. The width of the
Gaussians is set to 0.02 in units of the respective CV and
determines the resolution of the recovered free energy
surface.

The collective variables biasing the 250 ns dynamics
performed are either one or more atomic distances (di) or
the projection of the heavy atom positions along one or more
eigenvectors (Vi). Those eigenvectors are obtained applying
the essential dynamics technique,38 a principal-component-
based analysis (PCA), to the 40 heavy atoms of the whole
unbiased trajectory leading to a 120 × 120 covariance matrix.
This symmetric matrix represents the correlation between
atomic motions in Cartesian coordinate space and the
eigenvectors obtained from the diagonalization of the col-
lective motions. The eigenvectors corresponding to the largest
eigenvalues contain the largest fluctuations and hence hold
the most important motions of the system. The four largest
eigenvalues of the covariance matrix describe 32.0%, 13.6%,
12.3%, and 10.0% of the fluctuations.

The same analysis repeated using only the first 210 ns or
21 ns (10% and 1% of the simulation time, respectively) of
the unbiased trajectory showed similar results. In particular,
the overlap between the subspace generated by the first two

eigenvectors calculated after the first 21 ns and the reference
subspace generated by the first two eigenvectors of the whole
2.1 µs trajectory is 0.72, where 1 is a complete overlap. The
overlap increases up to 0.94 using the eigenvectors obtained
after 210 ns. The overlap is calculated as the root-mean-
square inner product of the first two PCA eigenvectors.39

To perform the metadynamics run, we modified the
PLUMED40 plug-in for GROMACS, introducing the eigen-
vectors as new collective variables. The reweighting proce-
dure described by Bonomi et al.41 was used to calculate the
projection of the FES on other CVs than the ones used to
bias the dynamics.

To quantitatively compare a metadynamics reconstructed
FES Fi(s) to the reference unbiased molecular dynamics FES
Fref(s) expressed in terms of the CVs defined in a region Ω,
we used two different parameters: (i) The distance measure
introduced by Alonso and Echenique is used:42 dA(Fi,Fref)
) [(σi

2 + σref
2 )(1 - ri,ref

2 )]1/2 where σx, with x denoting either
i or ref, is the statistical variance of the free energy Fx defined
by σx ) 1/N∫Ω(Fx(s) - <Fx >)2 ds where <Fx> ) 1/N∫ΩFx(s)
ds is the average value of Fx in the region Ω and N ) ∫Ω ds
is the normalization. The variances σx set the physical scale
of the measure and confer the energy units to the distance.
ri,ref is the Pearson correlation coefficient and measures the
degree of correlation between the two energy surfaces. It is
defined by ri,ref ) cov(Fi,Fref)/(σiσref) where cov(Fi,Fref) is
the covariance between the two free energies. Globally, the
dA measure is convenient since it is expressed in energy units
and can be directly compared to the thermal fluctuations.
(ii) The Kullback-Leibler divergence is used:43

KLdiv(Fi,Fref) ) ∫Ω exp(-Fref(s)/kBT)(Fi(s) - Fref(s))/kBT ds
expressed in terms of the free energies rather than the
probabilities Pi, making use of the relation Fi ) -kBT ln(Pi),
where kB is Boltzmann’s constant and T is the temperature.
It should be noted that it is dimensionless and not symmetric.
Such a parameter gives an interesting and slightly different
measure of the FES similarity, weighting the relevant regions
more, i.e., the free energy minima and valleys of the
reference surface, as compared to the high free energy ones.

Figure 1. Met-enkephalin with the three distances used as
structural observables: d1 ) dist(TYR1:N,MET5:CA), d2 )
dist(TYR1:CZ,PHE4:CZ), d3 ) dist(MET5:SD,PHE4:CZ).
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3. Results and Discussion

The reference FES is obtained from a 2.1 µs unbiased
simulation, whose convergence with respect to the FES was
checked by block analysis (see Supporting Information). The
metadynamics runs are performed using two different sets
of collective variables, namely, the distances between atoms
shown in Figure 1 and the projections along the first PCA
eigenvectors (see Computational Methods). The former CVs
have been chosen to intuitively describe the conformational
space of the peptide backbone and side chains. Such a set
was extracted from a visual inspection of the structures
sampled in the unbiased trajectory. The latter CVs take
advantage of the essential dynamics technique38,44 and have
been shown to be much more efficient than standard
clustering in reducing data and reproducing salient features
of protein folding.45 They have also been used to compress
MD trajectories46 and, with standard metadynamics, to
explore the free energy landscape of dialanine and SH3
domain.47

The two-dimensional FESs obtained as a function of (d1,
d2), (d1, d3), and (d2, d3) are shown in Figure 2. The unbiased
2.1 µs reference simulation (Figure 2, first column) presents
barriers smaller than 2 kBT as expected for a diffusive system.

The same free energy projections are overall well recon-
structed already after 100 ns in the two 2-CVs metadynamics
runs (Figure 2, center and right columns). Nevertheless, some
discrepancies emerge in a more detailed comparison. In
particular, the reconstructed landscape in the case of the
distance metadynamics (Figure 2, center column, first row)
completely misses the minimum at (d1,d2) ) (0.6,0.9),
showing in its place a high barrier. On the contrary, the
eigenvector metadynamics (Figure 2, right column) recovers
within 0.5 kBT all four minima, and the overall pattern of
the valleys similarly agrees. This holds also for FES(d1, d3)
and FES(d2, d3), in which the eigenvector metadynamics
performs better than the metadynamics using d1 and d2 as
CVs. In the case of the metadynamics using d1, d2, and d3

as CVs, 100 ns is not enough to correctly reproduce the free

Figure 2. Free energy surfaces as a function of the distances d1, d2, and d3 for the reference unbiased simulation and two
metadynamics simulations using respectively (d1, d2) and (v1, v2) as biases. The contour lines are drawn every 0.5 kBT.

3642 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Sutto et al.



energies FES(d1, d3) and FES(d2, d3) (see the Supporting
Information), while the simulation with V1, V2, and V3

performs as well as the metadynamics with V1 and V2 (see
the Supporting Information and Figure 2).

The reason underlying the worse performance of hand-
picked distance CVs over the projection over the principal
components can be better understood checking the fluctuation
content of each atom. In Figure 3 are shown the components
of the first two eigenvectors V1 and V2 for each one of the 40
heavy atoms. The five atoms involved in the three chosen
distances link highly fluctuating regions even though they
are not the most fluctuating ones. Clearly, any set of a few
atoms cannot fully describe the conformational motions since
their distances only take into account a limited number of
degrees of freedom. This suggests that the choice of the
eigenvectors as natural CVs has two main advantages. First,
the eigenvectors intrinsically describe the largest conforma-
tional changes and can be easily obtained from a preliminary
unbiased simulation. Second, such a choice avoids the
frustrating task of the quest of the most efficient CVs.

Hence, in the cases where the interest is to focus on slow
collective motions, like in protein conformational changes,
or where the choice of the CV is not trivial, the use of
eigenvectors provides both a simple and physically meaning-
ful alternative. It is worth it to mention that the set of PCA
eigenvectors always represents a complete and orthogonal
basis, avoiding a priori a linear correlation among CVs which
would lead to inefficient sampling. The number of eigen-
vectors used as CVs can be increased at will, eventually
reaching a complete representation of the degrees of freedom

of the system. This is mathematically exact when the number
of eigenvectors equals the number of degrees of freedom.
However, in practice, a very accurate representation can be
reached with a much smaller number of eigenvectors,
permitting a dramatic reduction in the size of the CV
space.45,46

The ability of these “natural” CVs to exhaustively explore
the conformational space is also reflected by the accuracy
of the reconstructed FES projected along two different and
global observables as the root-mean-square deviation from
a reference structure (rmsd) and the radius of gyration (rgyr)
shown in Figure 4. In fact, the position of the minimum and
the overall topology of the free energy landscape of the
metadynamics run completely agree with the reference
unbiased simulation. Moreover, if we compare the time
convergence of the metadynamics FES to the reference FES
with respect to the unbiased MD, we observe how these CVs
allow the system to explore larger regions of conformational
space in less time. In fact, although a fair convergence is
achieved within 100 ns with all of the tested CVs (distances
and eigenvectors), the eigenvector metadynamics provides
a FES that closely resembles the reference FES as early as
after 50 ns (see Figure 4). On the other hand, unbiased
simulation after neither 50 nor 100 ns explored the region
at (rmsd, rgyr) ≈ (0.31, 0.40-0.43).

To compare our sampled conformations to the literature
values, we extracted the representative geometries for each
of the three shallow minima present in the FES(v1,v2) shown
in Figure 5. Even though we used different observables than
Sanbonmatsu and Garcı́a,27 since their PCA eigenvectors
were obtained only from the five C-alpha motions, some
common features are apparent. In particular, the minimum
(A) corresponds to the same U-shaped conformation found
by Sanbonmatsu and Garcı́a27 and by Henin et al.,28 in which
the phenylalanine and tyrosine side chains are packed. In
the other two minima, the backbone is more elongated,
and the system explores both extended (B) and helix-like
(C) conformations, also in agreement with the aforemen-
tioned works. Interestingly, these minima are connected in
the essential space, indicating the absence of relevant barriers
in agreement with the high flexibility of this peptide.

Finally, in order to assess the convergence of the free
energy as a function of the number of collective variables,
we used two different parameters: (i) the correlation coef-
ficient introduced by Alonso and Echenique,42 which allows
quantitative measurement of the similarity between different
energy potentials, and (ii) the Kullback-Leibler diver-
gence,43 which weights the free energy minima more with
respect to poorly sampled regions (see Computational
Methods). These two coefficients are used as different
measures of the distance between the reconstructed FES
provided by the metadynamics runs and the reference
FES(rmsd,rgyr) of the unbiased MD simulation.

In Figure 6, we report these coefficients for both the
eigenvector metadynamics and distance metadynamics
compared to the unbiased MD run as a function of time.
Both coefficients and both sets of CVs give a similar result
and show that the metadynamics runs converge faster than
the unbiased run. The metadynamics with two and three

Figure 3. The 40 components of the first two PCA eigen-
vectors v1 and v2. Two identical balls-and-sticks Met-enkepha-
lin conformations are drawn with the 40 heavy atoms colored
by their average fluctuation on a scale from highest value (red)
to lowest (blue) for both of the two principal eigenvectors. The
distances d1, d2, and d3 are depicted as dashed lines between
the atoms. In the graph, the same information is represented
quantitatively. The five filled symbols represent the atoms
involved in either the d1, d2, or d3 distance definition.
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eigenvectors reach, and stay, below a 1 kBT reference
threshold before any other run. As for the convergence
as a function of the number of CVs, we expect that less

vectors (or distances) can miss important degrees of
freedom, while too many CVs slow down the metady-
namics filling time. This is reflected in the longer time

Figure 4. Free energy surfaces for different times as a function of the root-mean-square deviation (rmsd) and the gyration
radius (rgyr) for the reference unbiased simulation and the metadynamics simulation using (v1, v2) as a bias. The contour lines
are drawn every 0.5 kBT.

Figure 5. Free energy surface as a function of the projection over the two principal eigenvectors v1 and v2 with contour lines
every 0.5 kBT. The representative conformations of the three minima are also shown as insets and correspond to (A) a U-shaped
backbone with packed aromatic rings, (B) an elongated conformation, and (C) a helix-like structure.
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needed by the metadynamics with one and four eigen-
vectors to reach the goal accuracy.

Clearly, two PCA vectors strike the right balance and
converge the fastest, as seen in Figure 7, where we show
the accuracy, in terms of the distance dA to the reference
FES, as a function of the actual computer time needed to
reach it. After 110 ns, the equivalent of about one day of 24
parallel CPU usage, the metadynamics with V1 and V2

reconstructs the FES(rmsd,rgyr) with an accuracy below the
1 kBT threshold. The same accuracy is reached after 140 ns,

or 32 CPU h for the metadynamics with three eigenvectors.
The metadynamics with only V1 and with the four eigen-
vectors eventually reach the goal after 250 ns, performing
worse than the unbiased run.

4. Conclusions

In this paper, we compared the accuracy and computational
efficiency of long unbiased MD simulations and well-
tempered metadynamics in reconstructing the conformational
free energy landscape of a peptide. Given the nature of the
test case shown, which has low free energy barriers and
diffusive dynamics, the advantage of free energy methods
with respect to unbiased MD should be greatly reduced.
Nevertheless, we found that, with a rationally built set of
collective variables, well-tempered metadynamics is able to
reconstruct an accurate free energy surface quicker than
unbiased MD. These CVs, i.e., the eigenvectors describing
the principal directions of motion, constitute a natural set
which can be easily obtained from a preliminary unbiased
MD simulation. On the contrary, simple, yet hand-picked,
collective variables, as a set of chosen distances, turn out to
miss some relevant features of the free energy surface. These
results confirm the importance of the choice of the CVs but
also provide a simple approach to automatically define a set
of CVs that can be applied to reconstruct the FES of more
complex systems, where higher free energy barriers make
the convergence of unbiased MD simulation problematic.

Acknowledgment. The authors acknowledge S. Piana
for useful discussions and advice and the Barcelona Super-
computing Center for a generous allocation of computer
resources.

Figure 6. Comparison of the convergence of the free energy two-dimensional surface FES(rmsd,rgyr) for the eigenvector (blue,
left-hand-side panels) and distance (green, right-hand-side panels) metadynamics simulations as a function of time. In red is
shown the unbiased simulation. The similarities are calculated using as reference the 2.1 µs unbiased simulation FES shown
in Figure 4. In the upper panels, the metric dA is the energy-function distance introduced by Alonso and Echenique42 and has
units of kBT. A dashed line at 1 kBT defines the goal accuracy. In the lower panels, the similarity is computed using the
Kullback-Leibler divergence.43

Figure 7. Comparison of the computer simulation time as a
function of the distance dA of the reconstructed FES(rmsd,rgyr)
to the reference one, for the unbiased (red) and the eigen-
vector metadynamics simulations (blue). The computer time
refers to a run that uses 24 CPUs on a parallel cluster. The
points are plotted every 10 ns of simulation, for a total of 250
ns, time at which all of the simulations have reached the 1
kBT accuracy threshold represented by the dashed line.
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Supporting Information Available: Figures of free
energy surface, a table presenting block analysis of the
distance dA and KL-divergence calculated for the unbiased
trajectory, and a figure presenting a comparison of the
convergence of the free energy two-dimensional surface
FES(rmsd,rgyr) for the eigenvector and distance metady-
namics simulations as a function of time. This material is
available free of charge via the Internet at http://pubs.acs.org.
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Abstract: Our previous works have demonstrated the ability of our localized orbital correction
(LOC) methodology to greatly improve the accuracy of various thermochemical properties at
the stationary points of the density functional theory (DFT) reaction coordinate (RC). Herein,
we extend this methodology from stationary points to the entire RC connecting any stationary
points by developing continuous localized orbital corrections (CLOCs). We show that the resultant
method, DFT-CLOC, is capable of producing RCs with far greater accuracy than uncorrected
DFT and yet requires negligible computational cost beyond the uncorrected DFT calculations.
Various post-Hartree-Fock (post-HF) reaction coordinate profiles were used, including a
sigmatropic shift, Diels-Alder reaction, electrocyclization, carbon radical, and three hydrogen
radical reactions to show that this method is robust across multiple reaction types of general
interest.

I. Introduction

Density functional theory (DFT)1 has proven a very useful
theoretical tool for computing atomic and molecular elec-
tronic structures. In comparison to post-Hartree-Fock
methods, DFT methods are capable of calculating relatively
large systems and transition-metal-containing systems and,
therefore, are widely used in quantum chemistry and
condensed matter physics. The accuracy of DFT methods is
essentially dependent on the density functional used, which
is always an approximation of the hypothetical exact density
functional. During past decades, many attempts to construct
a more accurate functional have been undertaken, starting
from either first principles or empirical fitting, or both.2

However, the approximate nature of extant density func-
tionals inevitably weakens the robustness of DFT perfor-
mance in predicting, in particular, thermodynamic proper-
ties.3

Two distinct methods can be envisioned to tackle some
of the problems that still continue to plague DFT: (a) Many
researchers have had remarkable success by developing
wholly new density functionals.4 (b) Alternatively, one can
envision creating a new functional by simply taking an

existing functional and adding terms on top of it. These terms
can be used to target systematic errors endemic to each
functional.

In previous publications, we have shown that the accuracy
of DFT can be greatly improved for various thermochemical
properties with the use of localized orbital corrections, or
LOCs.5 These LOCs have been developed to treat stationary
points (i.e., reactants, products, and transition states) and are
based on a chemically intuitive dissection of each stationary
point’s electronic structure into valence bond terms. Further,
because the LOCs are applied a posteriori using a simple
noniterative computational algorithm, they require negligible
computational cost beyond standard DFT calculations. With
the application of LOCs, atomization energies, ionization
potentials, electron affinities, enthalpies of reaction, and
barrier heights can all be obtained with very good accuracy
for stationary points.

In this work, we extend our methodology beyond the
treatment of discrete stationary points with the goal of
providing energetics for the entire reaction coordinate (RC)
of a chemical reaction. As we already have developed LOCs
to treat the reactant, transition state, and product for an
arbitrary reaction, an obvious next step is to interpolate these
LOCs for all intermediate points and develop what we shall
refer to as continuous localized orbital corrections, CLOCs.* rich@chem.columbia.edu.
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This is depicted schematically in Figure 1, where the B3LYP-
LOC stationary point energies are shown (red points),
connected with the B3LYP-CLOC energy curve (also red).
While previous publications defined B3LYP-LOC energies
only at the stationary points (red points), B3LYP-CLOC
energies are defined all along the reaction coordinate (red
curve). The latter is the subject of the present work.

A naming convention implicit from the previous discussion
is that we use “LOC” to describe the discrete corrections,
those at the stationary points, exclusively. “CLOC” is used
to describe the continuous corrections, for all points that are
not stationary points. This is represented schematically in
Figure 1, where the B3LYP-LOC energies are defined at the
stationary points (red dots), whereas the B3LYP-CLOC
energies are defined all along the reaction coordinate (red
line).

In order for our model to be consistent, any CLOC
computed at a stationary point must agree with the LOC for
that same stationary point. Importantly, it is not possible to
compute a LOC for a point other than a stationary point
because LOC parameters have been developed for the
stationary points only. To treat points other than stationary
points, interpolation is necessary in a continuous fashion,
hence the necessity of the CLOC method.

It should be emphasized that LOCs are simple numerical
corrections that should improve the accuracy of the DFT-
predicted electronic energy. LOCs are added to the DFT
energy a posteriori and therefore cannot be used to improve
DFT-predicted geometries of molecular systems. In order
to perform geometry optimizations, and hence have our

corrections affect the geometry (at least in theory) and not
just the energy, we must be able to calculate gradients of
these corrections. In order to be able to perform geometry
optimizations, with CLOCs having an effect on the changes
in geometry, their first derivatives with respect to nuclear
displacements must be computed. This necessitates the
extension of these discrete LOCs into a continuous form that
connects the various stationary points. The innovations
described in this work extend LOCs to not only treat
nonstationary points but also to contribute to the optimization
of molecular geometries.

Herein, we present the results of our CLOC development
and show that it can be applied to seven reaction coordinate
profiles with greatly improved results compared to uncor-
rected B3LYP. We also provide comparison with the M06-
2X6 functional, which has a substantially improved perfor-
mance for reaction energetics as compared to B3LYP. Note
that while we have examined points along the reaction profile
exclusively in this paper, this is not a necessary condition
for the application of CLOCs. Points off the reaction
coordinate can also be treated, as described in more detail
in section III.A.

In this publication, as in others, we have focused our
efforts on corrections to the well-established B3LYP func-
tional. At the same time, we have previously tested our LOC
methodology in combination with other important functionals
including the M05-2X and M06-2X6 functionals of Truhlar
and co-workers.5c We find that no functional tested to date
combines with the LOC method as favorably as B3LYP.
Nevertheless, it is still possible for other functionals not yet
tested to produce more accurate results in combination with
LOCs than B3LYP-LOC itself.

II. Overview of the B3LYP-LOC Methodology

The B3LYP-LOC model has been successfully employed to
reduce errors endemic to DFT across a wide range of
thermodynamic properties including atomization energies,5a

ionization potentials and electron affinities,5b enthalpies of
reaction,5c,e and barrier heights,5e as shown in Table 1 and
Figure 2 below.

We have previously asserted that this impressive reduction
in error upon application of LOCs is not fortuitous but rather
reflects the systematic nature of the errors that are intrinsic
to DFT in general and specialized to the specific errors
characteristic of B3LYP. The LOCs dramatically reduce such
errors by assigning fitting parameters dependent upon the

Table 1. Performance of B3LYP vs B3LYP-LOC for Various Chemical Properties

mean unsigned error (MUE) (kcal/mol) number of parameters
(LOCs) employedaB3LYP B3LYP-LOC size of data set ref

atomization energies 4.8 0.8 22 (22) 222 5a
ionization potentials and electron affinities 3.2 0.9 45 (23) 134 5b
enthalpy of reactions 4.9 0.9 28 (0) 139 5c, 5e
barrier heights 3.2 1.2 36 (8) 105 5e

a The number of new parameters developed in each work is shown in parentheses. Specifically, the same 22 parameters developed
initially for atomization energies are used for all other calculations: ionization potentials and electron affinities, enthalpies of reactions, and
barrier heights. An additional 23, 0, and 8 parameters are developed specifically for these calculations, respectively. Some of the 23
parameters developed uniquely for ionization potentials and electron affinities were applied to enthalpies of reaction and barrier heights of
ionic reactions.

Figure 1. Reaction coordinate for an arbitrary reaction, where
B3LYP (green), B3LYP-LOC (red dots), and B3LYP-CLOC
(red line) are compared to an accurate benchmark (pink).
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local environment of an electron pair or single electron. These
parameters are then assumed to be transferable across
molecular species. As is discussed in detail in ref 5, the
dominant error in B3LYP can be identified as a difficulty in
accurately modeling variations in nondynamical electron
correlation across different types of chemical bonds, lone
pairs, hybridization states, chemical environments, and singly
vs doubly occupied orbitals.7 The LOCs yield a more
accurate representation of this variation as a function of local
chemical environment.

Assigning LOCs to a particular molecular system is often
straightforward. On the basis of the atomic coordinates of
the molecule, a valence bond structure can be proposed.
Some of the characteristics of valence bond structures have
been identified as contributing to DFT’s systematic errors.
Accordingly, each of these particular characteristics is
assigned a LOC to mitigate its error. In previous publications,
all LOC values, Ck, were determined using linear regression
such that they minimize the deviation between B3LYP and
the reference value for many different thermochemical
properties computed with several large data sets, as sum-
marized in Table 1.5 (A complete list of all of the LOCs
and their values, Ck, is provided in the Supporting Informa-
tion.) The total LOC(x) for any system x is then given simply
by the sum of all individual LOCs’ optimally determined
values, Ck, multiplied by their number of occurrences, Nk,
i.e., the number of times the particular valence bond
characteristic associated with them is counted.

These LOCs are then used in a straightforward manner to
correct the enthalpy of reaction, for example. The expression
for B3LYP reaction enthalpy is the difference in the
enthalpies of products and reactants:

Analogously, B3LYP-LOC reaction enthalpy is given by
the LOC-corrected enthalpy differences in products and
reactants:

or equivalently,

where ∆LOCrxn is defined as the difference between
LOC(products) and LOC(reactants). For example, consider
the reaction in Scheme 1. Each species involved is assigned
characteristics summarized in Table 2.

The B3LYP-LOC reaction enthalpy may be written as

where the LOC(x) terms on the right-hand side of this
equation are those given in the last row of Table 2.

Similar formulas can be derived for atomization energies,
ionization potentials, electron affinities, and barrier heights,
although the last of these involves treating a rather more
complex situation. This most recent work5e forms the basis
for the method described here. Specifically, the accuracy of
B3LYP’s barrier height prediction was improved with simple
numerical corrections to the reactant, product, and transition
state energies.5e The success of this effort suggests that we
can develop a robust description of a potential energy surface
by interpolating these corrections between the various
stationary points (reactant, transition state, and product) to
arrive at corrections for points intermediate between station-
ary points. This is described in detail in the section that
follows.

III. Development of Continuous Localized
Orbital Corrections

III.A. An Overview of CLOCs. In this section and
throughout the rest of the text, various new terms will be
introduced. Therefore, we have defined these terms for
convenience in addition to others that will be defined later,
in Table 3. In order to develop corrections for the entire
B3LYP reaction coordinate profile, it is necessary to first
evaluate the accuracy of B3LYP with respect to high-level
post-HF benchmarks along the entirety of the reaction
coordinate. While a fairly large amount of benchmark data
exists for thermochemical properties such as enthalpies of
reaction and barrier heights in the literature (wherein only
stationary points are required), there is a relative paucity of

Scheme 1. Reaction between Methyl Radical and Ethene to Give Propyl Radical

Figure 2. Performance of B3LYP (green) vs B3LYP-LOC
(red) for various thermochemical properties including atomi-
zation energies (AE), ionization potentials and electron affini-
ties (IP/EA), enthalpies of reaction (∆Hrxn), and barrier heights
(∆Hq). Data shown are taken from publications referenced in
Table 1.

LOC(x) ) ∑
k

NkCk (1)

∆Hrxn
B3LYP ) ∑

products

∆Hproducts
B3LYP - ∑

reactants

∆Hreactants
B3LYP (2)

∆Hrxn
B3LYP-LOC ) ∑

products

∆Hproducts
B3LYP-LOC - ∑

reactants

∆Hreactants
B3LYP-LOC

(3)

∆Hrxn
B3LYP-LOC ) ∆Hrxn

B3LYP + ∆LOCrxn (4)

∆Hrxn
B3LYP-LOC(CH3 + CH2dCH2 f CH3-CH2-CH2) )

∆Hrxn
B3LYP(CH3 + CH2dCH2 f CH3-CH2-CH2) +

LOC(CH3-CH2-CH2) - LOC(CH3) - LOC(CH2dCH2) (5)
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published data on complete reaction coordinates for systems
larger than a few atoms. To address this problem, we
produced our own curves computed with coupled cluster with
single, double, and iterative triple excitations [CCSD(T)] for
reactions a-f in Scheme 2. Specifically, single-point calcula-
tions along the reaction path were performed at the RCCSD-
(T)/cc-pVTZ//B3LYP/6-31+G** level. CCSD(T) energies
and B3LYP geometries were obtained with MolPro 2006.18

and Jaguar 7.6,9 respectively. The data for reaction g were
available in the literature.10 The reactions were chosen from
our latest DFT-LOC publication5e and represent a broad
range of chemistries: (a) cycloaddition, (b) electrocyclization,
(c) sigmatropic shift, (d) carbon radical, and (e-g) hydrogen
radical reactions. Although hardly exhaustive, we argue that
this set represents an acceptable starting point sufficient to
evaluate the accuracy of our method as it applies to systems
of general interest.

A subsequent examination of the B3LYP and post-HF
profiles for each reaction gives a qualitative picture of what
functional form the CLOC corrections should take. Specif-
ically, the ideal CLOC is one that minimizes the error along

the B3LYP-CLOC reaction profile in comparison with the
post-HF profile for each arbitrary point x and hence is given
by the following equation:

When x is a stationary point, LOC(x) necessarily equals
CLOC(x). Note that this equality only holds for stationary
points, as LOC(x) is undefined for nonstationary point
structures.

if and only if x is a stationary point. However, everywhere
where x is not a stationary point, one must define CLOC(x).

A simple examination of the extant LOCs shows that they
may be divided into those aimed at treating bonds, hybrid-
ization, radicals, hypervalency, environment, and charge
transfer of any system x.

The continuous implementation necessarily takes the same
form:

Each term of eq 9 will be discussed in its own subsection
directly following this one.

Table 2. Valence Bond Characteristics and Corresponding LOCs for the Reaction of Scheme 1

valence bond characteristic

Nk

LOC(x) Ck[kcal/mol] methyl ethene propyl transition state

sp2 carbons n/a n/a 1 2 1
sp2.5 carbons n/a n/a 2
sp3 carbons n/a n/a 2 1
CsH LOC(x)NPOLH 0.25 3 4 7 7
CsH attached to the radical-containing C LOC(x)RH 0.54 3 2 5
C---C LOC(x)MSBC/LSBC_0.5 -2.05 1
CsC LOC(x)MSBC -1.90 2
C---— C LOC(x)AA_1.5 -0.88 1
CdC LOC(x)DBC -1.00 1
CsC adjacent to another CsC LOC(x)ESBC -0.50 2 1/2

total LOC(x) [kcal/mol] 2.37 0.00 -1.97 1.27

Table 3. New Terms and Definitions

term definition

active atom an atom that belongs to at least one active bond
active bond a bond with an order that changes throughout the reaction coordinate, for example, from a singe bond in the

reactant to a double bond in the product
cutoff the distance at which a bond is considered to have zero bond order according to the distances given in Table 4
inactive atom an atom that belongs to no active bonds
inactive bond a bond with an order which does not change throughout the reaction coordinate
product-side bond description given to any bond which is intermediate in length between the transition state and product bonds
product-side structure description given to any structure where the majority of the bonds are assigned as “product-side bonds”
reactant-side bond description given to any bond which is intermediate in length between the transition state and reactant lengths
reactant-side structure description given to any structure where the majority of the bonds are assigned as “reactant-side bonds”

Scheme 2. Reactions Employed in This Studya

a (a) Diels-Alder, (b) electrocyclic, (c) sigmatropic shift, (d) carbon
radical, and (e-g) hydrogen transfer.

Epost-HF(x) ) EB3LYP-CLOC(x) ) EB3LYP(x) + CLOC(x)
(6)

EB3LYP-CLOC(x) ) EB3LYP-LOC(x) ) EB3LYP(x) +
CLOC(x) ) EB3LYP(x) + LOC(x) (7)

LOC(x) ) LOC(x)bond + LOC(x)hyb + LOC(x)radical +
LOC(x)hyperval + LOC(x)environ + LOC(x)CT (8)

CLOC(x) ) CLOC(x)bond + CLOC(x)hyb +
CLOC(x)radical + CLOC(x)hyperval + CLOC(x)environ +

CLOC(x)CT (9)
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To begin the calculation of CLOC(x) for an arbitrary
molecule x, we first require the availability of all relevant
stationary points (reactant, transition state, and product) for
reference. Specifically, the Cartesian coordinates of all of
these structures obtained with the same level of theory as
the arbitrary point (here, B3LYP/6-31+G**) must be
provided.

In order to perform the interpolation between the stationary
points, we must know where along the reaction coordinate
profile the arbitrary structure lies with respect to the input
structures. To this end, the arbitrary structure is analyzed
against these input structures to determine whether it is
reactant-side or product-side (i.e., whether it lies along the
reaction coordinate connecting reactant to transition state,
or transition state to product, respectively). Because of this,
the quality of the user-provided stationary points is critical.
Each bond of the structure x is analyzed individually with
respect to its bond length lx and receives its own assignment:
either reactant- or product-side. A reactant-side bond is
intermediate in length between the reactant and transition
state lengths, i.e., lr e lx < lts or lr g lx > lts. Similarly, a
product-side bond is intermediate in length between the
product and transition state lengths, i.e., lp e lx < lts or lp g
lx > lts. A structure that lies strictly along the reaction
coordinate will have all bonds fall into the same category;
however, this is not necessary for our algorithm to function,
as each bond is interpolated independently. In spite of the
ability to treat points that do not lie strictly along the reaction
coordinate, in this work we have restricted ourselves to the
study of structures that lie along the reaction coordinate
exclusively. While we have high confidence in the ability
of our method to treat these points, treatment of points that
do not lie exactly along the reaction coordinate is feasible
where these points lie at least close to the reaction coordinate.
Because the integrity of the method outlined is dependent
upon the choice of reaction coordinate, meaningful results
may not be obtained for cases where the choice of most
appropriate reaction coordinate is not straightforward. How-
ever, we leave an assessment of the accuracy of the model
for such structures to a future publication.

Once a bond in x is determined to be either product-side
or reactant-side, we use its bond length, lx, to determine
quantitatively where along that half of the reaction coordinate
it lies. Each lx is compared to the nearest equilibrium bond
lengths, leq (reactant if it is a reactant-side bond, product if
it is a product-side bond), and the transition-state bond length,
lts, to obtain δx.

From eq 10, δx approaches zero for bond lengths close to
the equilibrium lengths (reactant or product) and approaches
one for bond lengths similar to the transition state lengths.
Equation 10 is undefined, however, where leq is infinitely
long, i.e., when the bond is completely broken, in either the
reactant or product structure. This difficulty is encountered
in all intermolecular reactions. To circumvent this problem,
we have defined an effective cutoff length, such that any

bond with a length exceeding the cutoff is instead assigned
the cutoff value. At this length, the bond is assigned a bond
order of zero, and hence no bond corrections, CLOC-
(x)bond or LOC(x)bond, are assigned to it, as bond corrections
are only assigned for bonds with nonzero bond orders. For
the reactions depicted in Scheme 2, we have arrived
empirically at the cutoff lengths given in Table 4. However,
an inspection of Scheme 2 shows that only a limited number
of bond types are studied: H-X, where X ) H, O, Cl, and
C, and C-C. Therefore, we are forced to define cutoff
lengths for bonds heretofore not studied. To do so, we note
that the cutoff lengths given in Table 4 for any bond i
correspond to roughly twice the transition state bond length
for that same bond, 2lts. Specifically, the average transition
state bond length, lts

avg, for all H-X bonds (X ) H, O, Cl,
C) studied herein, is lts

avg ) 1.2 Å, and the empirically
determined cutoff of 2.2 Å ) 1.9lts

avg. Likewise, the average
transition state bond length for all C-C bonds studied herein
is lts

avg ) 2.3 Å, and therefore the cutoff of 4.0 Å ) 1.7lts
avg.

Therefore, all cutoff lengths for systems heretofore not
studied are taken as 1.8 times the length of the bond in the
transition state, 1.8lts, assuming transferability of the empiri-
cally determined cutoff length trend. We are not barring the
possibility of refinement of these cutoff values when more
reaction profiles are explored in the future.

Equipped with our estimate of how far along the reaction
coordinate the arbitrary structure lies with respect to each
bond length (δx), we only need the equilibrium LOCs, to
proceed with the interpolations between LOC(reactant),
LOC(ts), and LOC(product). These are determined using an
automated script that gives the corrections already described
in previous publications5c,e with one minor exception de-
scribed in section III.F.

The obtained equilibrium LOCs are then used to calculate
each component i of CLOC(x) (see eq 9) according to the
equation

where

and LOC(eq)i is set to be LOC(reactant)i for a reactant-side
interpolation or LOC(product)i for a product-side interpola-
tion. Therefore, we are only left with the task of choosing
the appropriate f(δx)i for each component i of eq 9, where i
can be bond, hyb, etc.

In eq 11, the i subscript is used to emphasize that we have
chosen to interpolate each CLOC term individually, each
term receiving its own unique f(δx)i. Hypothetically, the
interpolations could be performed instead on the basis of
just one value of f(δx) that reflects where along the reaction
coordinate the structure lies in its entirely. However, in spite

δx )
lx - leq

lts - leq
(10)

Table 4. Cutoff Lengths for leq

bond type cutoff length (Å)

H-X (X ) H, O, Cl, C) 2.2
C-C 4.0
all other bonds 1.8lts

CLOC(δx)i ) LOC(eq)i + f(δx)i × ∆LOCi (11)

∆LOCi ) LOC(ts)i - LOC(eq)i (12)
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of its simplistic appeal, to obtain meaningful results with
this method, all bond lengths and hybridization states etc.
must fall at the same place along the reaction coordinate.
By using the formulation presented in eq 11, where each
term is interpolated individually, no such restriction is
applied. Therefore, we have chosen to interpolate on a term-
by-term basis to allow for increased flexibility and accuracy.

Clearly, the ability to assign LOCs to stationary points,
and hence interpolate CLOCs for all intermediate structures,
is dependent upon the ability to accurately assign Lewis
structures to the former. All assignments of Lewis structures
in this work were performed using an automated script (also
used in other works described above5c,e). When this auto-
matic assignment fails, human intervention might be neces-
sary to provide information about the formal charges and/or
spins in the same input file with the input structures, thereby
preventing misassignment of more complicated systems. It
is possible that the CLOC approach will be inapplicable to
some systems with a poorly understood or badly defined
Lewis structure. For the vast majority of systems of practical
interest, no difficulty is encountered in this respect whatso-
ever. Specifically, large systems, such as those of interest to
organic chemists and biochemists, are regularly studied using
DFT for its excellent balance of performance and accuracy.11

These same systems generally have well-defined Lewis
structures and can therefore be treated easily with our CLOC
methodology, as shown by the successful treatment of various
organic chemistry reactions in our latest work.5e

III.B. CLOCs for Bonds, CLOC(x)bond. As is discussed
in detail in our previous publications,5 the DFT-LOC model
provides improvements to the estimation of nondynamical
electron correlation by a specific DFT functional for localized
electron pairs. The DFT-LOC bond corrections, or LOC-
(x)bond, rest upon the assumption that the localized nuclear
framework supporting an electron pair is a principal factor
controlling the deviations in value of the nondynamical
correlation from the “average” value within global hybrid
functionals. Therefore, empirical corrections are applied on
the basis of these localized frameworks. Consider, for
example, the corrections applied to single bonds between
heavy atoms of various lengths, when the 6-311++G(3df,3pd)
basis set is used: short (-1.36 kcal/mol), medium (-1.90
kcal/mol), and long (-2.57 kcal/mol). These values become
appreciably more negative with increasing bond length. This
reflects the physically intuitive notion that as bond length
increases, nondynamical correlation becomes more negative
(as the electrons have more room to avoid each other), and
B3LYP systematically underestimates this two-particle cor-
relation effect with increasing severity.

The total LOC(x)bonds is given as the sum of all the various
terms’ bond LOCs:

where i runs over the 14 LOCs unique to bonds. The rationale
for each correction is described in detail in ref 5, while the
optimized value for each correction is given in the Supporting
Information.

Analogously, the total CLOC(x)bonds is given by

where i again runs over the 14 LOCs unique to bonds.
All LOCs for bonds, LOC(x)bonds, are designed to treat

bonds of order 0.5, 1, 1.5, 2, 2.5, and 3. Yet we desire the
ability to treat all bond orders and, thereby, transform
LOC(x)bond to CLOC(δx)bond. As stated previously, CLOC(δx)i

is given by eq 11, which is modified such that it is specific
to CLOC(δx)bond (i ) bond) and is written as

where

Therefore, we are only left with the task of choosing a
proper form for f(δx)bond such that it satisfies the appropriate
boundary conditions:

Inspection shows that these boundary conditions are
designed to ensure that CLOC(δx)bond ) LOC(eq)bond at δx

) 0 (i.e., at the reactant or product) and that CLOC(δx)bond

) LOC(ts)bond at δx ) 1 (i.e., at the transition state). Put
simply, we are ensuring agreement between the previously
developed LOCs and the continuous version, CLOCs, in the
reactant, product, and transition state; i.e., LOC(x) )
CLOC(x) where x is a stationary state.

It is reasonable to define f(δx)bond as either a linear,
Gaussian, or power function to satisfy these boundary
conditions:

One can envision using other functions as well to perform
the interpolations. For example, f(δx) ) sin(δx × π/2) could
also be employed. We are not barring the possibility of
adopting this or other interpolating functions in the future.

While eqs 18-20 all satisfy the necessary boundary
conditions, it is also necessary that any f(δx) be everywhere
differentiable such that its gradients can be defined. It is easy
to see how linear interpolations based upon eq 18 would
lead to nondifferentiable cusps at the transition state (δx )
1), where the reactant-side and product-side linear interpola-
tions intersect, giving a curve with a shape similar to a
triangle wave. For this reason, linear interpolations were
discarded in spite of their simplicity. Among the power
functions described by eq 20, we found cubic functions to
best mimic the qualitative shape of the B3LYP error (for at
least the shorter-bond-length half of the reaction coordinate)
and therefore to give the best results. Unfortunately, testing
has revealed that for the application of the CLOC method,
cubic functions do not decay quickly enough to zero as δx

LOC(x)bonds ) ∑
i

LOC(x)i (13)

CLOC(x)bonds ) ∑
i

CLOC(x)i (14)

CLOC(δx)bond ) LOC(eq)bond + f(δx)bond × ∆LOCbond

(15)

∆LOCbond ) LOC(ts)bond - LOC(eq)bond (16)

f(δx)bond ) {0, if δx ) 0;
1, if δx ) 1 (17)

f(δx)bond ) δx (18)

f(δx)bond ) e-γ(1-δx)2
(19)

f(δx)bond ) 1 - (1 - δx)
n (20)
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approaches zero. To solve this problem, we multiply our
cubic function by a function of the following form:

where � is an adjustable coefficient which controls the rate
of decay, here chosen to be 200, and δx is defined by eq 10.

Inspection of Figure 3 shows that g(δx) decays rapidly as
δxf 0. Therefore, multiplication of the cubic function given
in eq 20 with g(δx) gives a new function that decays to zero
with the proper rate as δx f 0. This function now has a
desirable analytical behavior and can be used to interpolate
between our limiting stationary point LOCs according to eq
11 for all bonds. Further, Gaussian functions, given by eq
19, can also be used, without modification, to the same end.

Interestingly, we have found that a combination of the two
functions, modified cubic and Gaussian, serves as an even
better match for the DFT B3LYP error as a function of
intrinsic reaction coordinate. To understand how the two
functions are combined, first consider how an active bond
changes along the reaction coordinate. The characteristics
of a bond in a transition state structure along the reaction
coordinate change from bond order sr with length lr in the
reactant to bond order sp with length lp in the product. For
such a bond, we assume that the bond order in the transition
state is an average of these two bond orders, sts ) (sr +
sp)/2, with corresponding length lts.

If lr > lp, any bond in the arbitrary structure with bond
order sx and bond length lx has an interpolated LOC obtained
from eq 11 where f(δx)bond is given by

Alternatively, if lr < lp, we have

In both eqs 22 and 23, γ is an adjustable parameter to
modulate the width of the Gaussian curve, set here to 5. � is
used as in eq 21, and δx is defined by eq 10.

Although empirically derived, this differential treatment,
i.e., cubic interpolations for the shorter-bond-length half of
the reaction coordinate (i.e., lr < lx < lts or lts > lx > lp) and
Gaussian interpolations for the longer, is founded upon the
dependence of the reaction coordinate on bond length.
Consider the reaction H1-H2 + H3f H1 + H2-H3, where
each hydrogen has been marked with a unique superscript
for the purpose of the argument. Inspection of Figure 4 shows
that the H1-H2 bond length changes insignificantly with
reaction coordinate on the reactant side, from 0.74 Å in the
reactant to 0.93 Å in the transition state. Conversely, the
H1-H2 bond length changes considerably with reaction
coordinate on the product side, from 0.93 Å in the transition
state to essentially infinite bond length in the product.
Therefore, a Gaussian is employed on the product side for
H1-H2 interpolations to ensure that the CLOC decays rapidly
along the reaction coordinate, whereas a cubic function is
used on the reactant side for H1-H2 interpolations for the
opposite reason.

III.C. Defining CLOCs for Hybridization, CLOC(x)hyb.
In previous publications, we have also defined LOCs to
describe various hybridization states, LOC(x)hyb. While it is
true that DFT in general benefits from significant cancellation
of intra-atomic error as one goes from atoms to a molecule,
i.e., as bonds are formed and atomic electronic structure is
changed, these parameters were developed to address errors
that remain in spite of this cancellation. These LOC(x)hyb

parameters address the relatively large changes in orbital
sizes, shapes, and occupancies that accompany bond forma-
tion and hence cause variations in nondynamical electron
correlation for an electron pair contained in an orbital with
a particular hybridization.

Each of these LOCs has its own unique purpose. For
example, LOC(x)N/P_sp2 and LOC(x)N/P_sp3 are assigned for
each nitrogen or phosphorus atom with sp2 or sp3 hybridiza-
tion, respectively. Extensive definitions and optimized values
(Ck) for all hybridization LOCs [LOC(x)hyb] can be found in
our previous publications5 or the Supporting Information.

If we wish to treat hybridization states other than sp, sp1.5,
sp2, sp2.5, and sp3, we must transform our LOC(x)hyb to the
continuous CLOC(x)hyb. To simplify the calculation of

Figure 3. g(δx) vs δx as defined by eq 21.

g(δx) )
1

1 + e-�δx
(21)

f(δx)bond ) { e-γ(1 - δx)2
, if lr > lx g lts;

1 - (1 - δx)
3

1 + e-�δx
, if lts > lx g lp

(22)

f(δx)bond ) {1 - (1 - δx)
3

1 + e-�δx
, if lr > lx g lts;

e-γ(1 - δx)2
, if lts > lx g lp

(23)

Figure 4. Bond lengths vs intrinsic reaction coordinate (IRC)
for H1-H2 + H3 f H1 + H2-H3. H1-H2 bond lengths are
shown in red, while H2-H3 bond lengths are shown in green.
Note that H1-H2 bond length changes rapidly for IRC > 0,
yet slowly for IRC < 0. The opposite is true for H2-H3

according to symmetry.
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CLOC(x)hyb, we have split each of the CLOC(x)hyb terms into
“active” and “inactive” terms so that CLOC(x)hyb is written
as the sum of these two components.

The total CLOC(x)hyb is given by the sum of all hybridiza-
tion CLOCs, each having an inactive and active component:

where i runs over the nine LOCs unique to hybridization.
Accordingly, a given reaction profile (with reactant,

transition state, and product structures) is processed to
classify all of the bonds as either “active” or “inactive”, i.e.,
as bonds with changed or unchanged bond orders along the
reaction coordinate, respectively. Similarly, atoms are also
classified as either inactive or active. Inactive atoms are those
attached exclusively to inactive bonds, whereas active atoms
are those attached to one or more active bonds. For example,
in the reaction between methanol and the hydrogen atom,
H3C-O-H + H · f H3C-O · + H-H, the OH bond and
the HH bond are both active, whereas the CO and CH bonds
are inactive. Further, the carbon atom and hydrogens attached
to it are inactive atoms, while all others are active.

The inactive component of CLOC(x)hyb is taken in direct
analogy to eq 1 as

where the index k runs over all inactive atoms, assigning
LOCs in the same way as if these atoms were part of an
equilibrium structure. Because inactive atoms experience no
change in hybridization throughout the entirety of the reaction
coordinate (as ascertained upon analysis of the reactant,
product, and transition state structures input), we treat them
as if they were still in their equilibrium states. Instead, we
concern ourselves with treating only the active components
of the reaction coordinate for hybridization in a dynamic
fashion, CLOC(x)hyb

active. Specifically, CLOC(x)hyb
active is taken

as an interpolated value between LOC(eq)hyb and LOC(ts)hyb,
where LOC(eq)hyb is LOC(r)hyb for a reactant-side interpola-
tion or LOC(p)hyb for a product-side interpolation. Adapting
eq 11 to the active hybridization term gives

where

In order to properly specify CLOC(x)hyb
active, we must first

arrive at a proper definition of hybridization itself. While a
bond is defined simply by two atomic centers and the
distance between them, l, hybridization of an atom is a more
complex characteristic which depends on all atoms surround-
ing the given atom, as well as the respective bond lengths,
l1, l2, ..., ln. Therefore, eqs 22 and 23, which depend only

upon one bond length, are not sufficient to define hybridiza-
tion, and similarly to the situation above, we define an
interpolating f(δx)hyb for eq 27 such that it satisfies the
appropriate boundary conditions.

As in section III.B for CLOC(x)bonds, a simple examination
reveals that these boundary conditions ensure that LOC-
(ts)hyb

active ) CLOC(x)hyb
active where f(δx)hyb ) 1, i.e., at the

transition state, and that LOC(eq)hyb
active ) CLOC(x)hyb

active where
f(δx)hyb ) 0, i.e., for the reactant or product. Again, we are
simply ensuring that LOC(x)hyb

active ) CLOC(x)hyb
active when x

is a stationary state.
To take into account the multiatom dependence of

hybridization, we have defined f(δx)hyb for atomic LOCs as
the average of all f(δx)bond’s values over all active bonds
connected to that atomic center:

where i is an index that runs over all active bonds. It is easy
to see that as the bonds connected to any particular atom
become more transition-state-like, as f(δx)bond f 1, on
average, the interpolated hybridization also becomes more
transition-state-like, that is, f(δx)hyb f 1. This also holds in
the reverse direction, i.e., as bonds become more reactant-
or product-like. In this manner, the interpolated value of
CLOC(x)hyb

active according to eq 27 is tuned to reflect how
reactant-, product-, or transition-state-like the hybridization
of an active atom is as a function of how reactant-, product-,
or transition-state-like the bonds connected to it are on
average.

III.D. Defining CLOCs for Radicals, CLOC(x)radical. As
argued extensively in our previous publications,5 the self-
interaction term in DFT is used to quantitatively model the
nondynamical electron correlation of an electron pair.
However, this self-interaction term becomes problematic for
unpaired electrons. We have previously developed correc-
tions to specifically treat atoms with radicals localized on
them, LOC(x)radical, to remedy systematic overbinding:
LOC(x)RH, LOC(x)RA, and LOC(x)RT, to treat atomic centers
with localized radicals that have neighboring bonds to
hydrogen, single or double bonds to heavy atoms, or triple
bonds to heavy atoms, respectively.

The number of unpaired electrons and formal charge on
each atomic center are ascertained by assuming a set number
of valence electrons, �, for each atom type, as specified in
Table 5. The formal charge (q) and number of unpaired
electrons (u) is then a function of the element’s group number

CLOC(x)hyb ) CLOC(x)hyb
active + CLOC(x)hyb

inactive (24)

CLOC(x)hyb ) ∑
i

[CLOC(x)hyb
active + CLOC(x)hyb

inactive]i

(25)

CLOC(x)hyb
inactive ) ∑

k

NkCk (26)

CLOC(x)hyb
active ) LOC(eq)hyb

active + f(δx)hyb × ∆LOChyb
active

(27)

∆LOChyb
active ) LOC(ts)hyb

active - LOC(eq)hyb
active (28)

Table 5. Valency for Each Atom Type

atom type � example

H, He 2 H2

Al, B 6 BH3

Cl, P, or S with ∑i si > 8 - g 10 PCl5
all other 1st and 2nd row atoms 8 CH4

f(δx)hyb ) {0, for stationary state;
1, for transition state

(29)

f(δx)hyb ) 1
n ∑

i)1

n

[f(δx)bond]i (30)
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on the periodic table (g) and the bond order of all bonds
connected to it (si) according to

Given the number of unpaired electrons, u, we can
compute the radical CLOCs: CLOC(x)RH, CLOC(x)RA, and
CLOC(x)RT. [For a complete list of all CLOCs and their
definitions and values, including the radical CLOCs, CLOC-
(x)radical, the reader is referred to our previous publications5

or the Supporting Information.]
According to eq 1, the contribution due to radical LOCs

to the total LOC for an equilibrium structure will be given
by

where, here, i runs over the three LOCs unique to radicals
[LOC(x)RH, LOC(x)RA, and LOC(x)RT] and Nk and Ck are the
count and LOC value, respectively. Specifically,

where ui is the number of unpaired electrons, [ηRH]i is the
number of single bonds to hydrogen atoms, [ηRA]i is the
number of single or double bonds to non-hydrogen atoms,
and [ηRT]i is the number of triple bonds, all corresponding
to center i.

In order to adapt our equilibrium LOC(x)radical contribution
to the continuous representation, CLOC(x)radical, we must
allow for noninteger values of nRH, nRA, and nRT. To
accomplish this, we substitute η in eqs 33-35 with some
function of the bond orders for the bonds of interest, f(s):

where sRH, sRA, and sRT are the bond orders between the
atomic center of interest i and its neighboring hydrogen atom
(RH) or neighboring non-hydrogen atom (RA or RT).

Again, we desire f(s) functions that both are differentiable
and satisfy the appropriate boundary conditions. LOC(x)RH is
applied to any radical-containing atom i with bonds to hydrogen.
Therefore, the boundary conditions dictate that there be no
LOC(x)RH when atom center i is not bonded to a hydrogen atom.
Conversely, there must be one LOC(x)RH applied for each

(single) bond to hydrogen from atom center i. The boundary
condition for fRH(sRH) in eq 36 is hence given by

where sRH is the bond order of the bond between atom center
i and the neighboring hydrogen atom.

Likewise, LOC(x)RA is applied to any radical-containing
atom i with single or double bonds to non-hydrogen atoms.
Thus, we desire one LOC(x)RA for each atom center i with
a single or double bond to another non-hydrogen atom and
no LOC(x)RA for each atom center i with no bond or a triple
bond to another non-hydrogen atom. The boundary condition
for fRA(sRA) in eq 37 is hence given by

where sRA is the bond order between the radical-containing
atom i and the neighboring non-hydrogen atom.

Lastly, LOC(x)RT is applied to any radical-containing atom
i with a triple bond to a non-hydrogen atom. Thus, we desire
one LOC(x)RT for each atom center i with a triple bond to
another non-hydrogen atom and no LOC(x)RT for each atom
center i with no triple bond to another non-hydrogen atom.
The boundary condition for fRT(sRT) in eq 38 is hence given
by

where sRT is the bond order between the radical-containing
atom i and the neighboring non-hydrogen atom.

As discussed above, we can readily employ Gaussian
functions to both meet the differentiability requirement and
satisfy our various boundary conditions.

where V is set to 5 to ensure a proper rate of growth and
decay for our functions.

Therefore, the CLOC(x)radical term is written as

where NRH, NRA, and NRT are defined by eqs 36-38 and
42-44.

III.E. CLOCs for Hypervalency, CLOC(x)hyperval. We
also define LOCs for atoms with more than eight valence
electrons or two valence electrons, for hydrogen and helium
atoms: LOC(x)hyperval. These LOCs are designated LOC-

g - q + u + ∑
i)1

n

si ) � (31)

LOC(x)radical ) ∑
i

LOC(x)i ) ∑
i

Ni × Ci (32)

NRH ) ∑
i

ui[ηRH]i (33)

NRA ) ∑
i

ui[ηRA]i (34)

NRT ) ∑
i

ui[ηRT]i (35)

NRH ) ∑
i

ui[fRH(sRH)]i (36)

NRA ) ∑
i

ui[fRA(sRA)]i (37)

NRT ) ∑
i

ui[fRT(sRT)]i (38)

fRH(sRH) ) {0, for sRH ) 0 or sRH ) 2;
1, for sRH ) 1 (39)

fRA(sRA) ) {0, for sRA ) 0 or sRA ) 3;
1, for sRA ) 1 or sRA ) 2 (40)

fRT(sRT) ) {0, for sRT ) 2 or sRT ) 4;
1, for sRT ) 3 (41)

fRH(sRH) ) e-V(sRH-1)2
(42)

fRA(sRA) ) {e-V(sRA-1)2
, if sRA e 1;

1, if 1 < sRA e 2;

e-V(sRA-2)2
, if sRA > 2

(43)

fRT(sRT) ) e-V(sRT-3)2
(44)

CLOC(x)radical ) CLOC(x)RH + CLOC(x)RA +
CLOC(x)RT ) NRH × CRH + NRA × CRA + NRT × CRT

(45)
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(x)OCT_EXP and LOC(x)H_dival, respectively. The total LOC-
(x)hyperval is thus given by the sum of these two terms:

Analogously, we write the continuous version, CLOC(x)hyperval, as

Both of these terms will be discussed in the subsections that follow.
III.E.1. Hydrogen HyperValency: CLOC(x)H_diVal. In ref 5e,

105 transition states and barrier heights were analyzed at
the B3LYP level. A thorough analysis of the errors in these
B3LYP barrier heights reveals that transition states in which
the central hydrogen atom is flanked by at least one non-
hydrogen/noncarbon atom (as shown in the transition states
of examples i-iii below) all display systematic errors.
Presumably, this originates in overestimation of nondynami-
cal electron correlation due to localized high electron density.

In this same study,5e we also found that the transition state
in which the central hydrogen atom is flanked by two
hydrogen atoms (as in example iv below) displays ap-
proximately the same error in barrier height. This transition
state is highly analogous to the well-described H2

+ mol-
ecule12 where the self-interaction term described earlier does
not serve to model nondynamical electron correlation but
instead engenders a clear source of systematic error.13

Accordingly, LOC(x)H_dival is assigned to cases where the
central hydrogen atom is flanked by two hydrogens to remedy
this error as well.

In summary, LOC(x)H_dival is applied to transition states
in which the central hydrogen atom is flanked by at least
one noncarbon/nonhydrogen atom (nA g 1, in eq 50) or
where the central hydrogen atom is flanked by two additional
hydrogen atoms (nH ) 2 in eq 50).

We may rewrite the above discussion in terms of equations
as follows. In the discrete version of the approach, the
H_dival correction for any system x, LOC(x)H_dival, is written
as

CH_dival is the correction’s numerical value, optimized to
reduce the B3LYP error, and NH_dival is given by

where i is an index that runs over all hydrogen atoms and η
is defined by the number of bonds to each hydrogen atom
according to

Here, nA is the number of bonds between hydrogen atom i
and noncarbon/non-hydrogen atoms, whereas nH is the
number of bonds between hydrogen atom i and other
hydrogens. For example, the transition states of the following
reactions each merit η ) NH_dival ) 1:

(i) H2O + NH2 f HO + NH3 via [HOsHsNH2]•‡

(ii) CH4 + OH f CH3 + OH2 via [CH3sHsOH]•‡

(iii) H2 + Cl f H + HCl via [HsHsCl]•‡

(iv) H2 + H f H + H2 via [HsHsH]•‡

In each of these transition states, the central hydrogen atom
is flanked by either two hydrogen atoms or at least one non-
hydrogen/noncarbon atom. Alternatively, the transition states
of the following reactions have η ) NH_dival ) 0:

(v) CH4 + CH3 f CH3 + CH4 via [CH3sHsCH3]•‡

(vi) CH3 + H2 f CH4 + H via [CH3sHsH]•‡

In these transition states, the central hydrogen atom is flanked
by either two carbon atoms or one carbon atom and one
hydrogen atom. Notice that the case where the central
hydrogen atom is flanked by two hydrogen atoms (example
iv) still merits η ) NH_dival ) 1 as described in the discussion
above.

We assume integer bond orders in reactants and products
and integer bond orders in addition to bond orders 0.5, 1.5,
and 2.5 in transition states. In eq 50, any of these would be
considered “bonds” and hence contribute to n as illustrated
in the examples above.

To adopt LOC(x)H_dival to the continuous case and hence
specify the functional form for CLOC(x)H_dival, we redefine
η as a function of δx. Specifically, eq 50 may be written as
ηX-H-Y, where the subscripts X and Y indicate the type of
atoms flanking the central hydrogen atom. As before, A is
defined as any atom other than carbon or hydrogen.

In eq 51, δX-H is dependent upon the length between atom
X and the central hydrogen atom, lX-H, according to eq 10.
δY-H is defined similarly. Note that ηX-H-Y is defined for
examples i-iv above but is always zero for examples v-vi.
This is consistent with the prescriptions detailed at the
beginning of this section.

An inspection of eq 51 shows that as both bond lengths,
lX-H and lY-H, approach their transition state lengths, δX-H

and δY-H, ηX-H-Yf 1 and hence CLOC(x)H_dival is applied.
Likewise, as both bond lengths approach the equilibrium
lengths, δX-H and δY-H, ηX-H-Y f 0 and hence CLOC-
(x)H_dival is not applied. This is consistent with our under-
standing of hydrogen abstraction reactions, wherein the
hydrogen being abstracted is divalent in the transition state,
where CLOC(x)H_dival is applied, but only monovalent in the
reactant and product, where CLOC(x)H_dival is not applied.

In eq 51, a product of δX-H and δY-H is employed to ensure
that ηX-H-Y is a function of both bond lengths lX-H and lY-H

and that it decays quickly to zero when at least one of the
bond lengths is greater than the transition state bond length,
i.e., as δX-H or δY-H f 0. This reflects the fact that
hypervalency on hydrogen is a function of two bond lengths.
For example, if only lX-H is near the transition state bond

LOC(x)hyperval ) LOC(x)OCT_EXP + LOC(x)H_dival (46)

CLOC(x)hyperval ) CLOC(x)OCT_EXP + CLOC(x)H_dival

(47)

LOC(x)H_dival ) NH_dival × CH_dival (48)

NH_dival ) ∑
i

ηi (49)

η ) {0, if nA < 1;
1, if nA g 1 or nH ) 2 (50)

ηX-H-Y ) {√δX-H × δY-H, for X ) A1 and Y ) A2,

or X ) A and Y ) C,
or X ) A and Y ) H,
or X ) H1 and Y ) H2;

0, for X ) C1 and Y ) C2,
or X ) C and Y ) H

(51)
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length, giving δX-H ≈ 1, but lY-H is near the equilibrium
length, giving δY-H ≈ 0, in fact the central hydrogen is not
hypervalent via chemical intuition. Accordingly, we desire
ηX-H-Y ≈ 0 such that CLOC(x)H_dival is effectively not
applied. This is indeed realized with the functional form of
eq 51.

Alternatively, had we defined ηX-H-Y as simply the
average of δX-H and δY-H, i.e., ηX-H-Y ) (δX-H + δY-H)/2,
the proper behavior would not be observed in the illustrative
example given above. Specifically, for δX-H ≈ 1 and δY-H

≈ 0, ηX-H-Y ) (δX-H + δY-H)/2 ≈ 1/2 and CLOC(x)H_dival

would be nonzero and hence imply partial hypervalency on
the central hydrogen atom, in spite of the fact that we know
from chemical intuition that hypervalent character of this
central hydrogen atom is negligible.

The necessity for the square root over the product in eq
51 becomes clear upon consideration of an additional
illustrative example. Imagine a central hydrogen atom that
is only “half-hypervalent”, i.e., halfway along the reaction
coordinate between the reactant or product and transition state
in a standard hydrogen abstraction reaction. Here, δX-H )
δY-H ) 1/2, and we desire ηX-H-Y ) 1/2 to reflect this “half-
hypervalency.” Defining ηX-H-Y as a simple product, i.e.,
ηX-H-Y ) δX-H × δY-H, would yield ηX-H-Y ) 1/4 in this
case, and hence this system would not be described as “half-
hypervalent” as we desire but instead as only “quarter-
hypervalent”. Instead, we define ηX-H-Y as the square of the
product to effect the proper behavior, in this case, ηX-H-Y

) 1/2, consistent with our understanding that this system is
“half-hypervalent”.

Combining eq 49 with eq 51 allows us to define CLOC(x)H_dival

as

III.E.2. HeaVy-Atom HyperValency: CLOC(x)OCT_EXP. The
motivation driving the definition of this term is analogous
to that described for CLOC(x)H_dival in section III.E.1.
Specifically, we assume that there is overestimation of the
nondynamical electron correlation for environments with
overall higher electron density from neighboring orbitals.
These systems are exemplified by the systems ClF3 and PCl5

where the central atom has a valence shell expansion beyond
the usual octet. This term is also applied to transition states
exemplified by the SN2 reaction F- + CH3Cl f Cl- +
CH3F. Here, the carbon of the transition state also experi-
ences an increase in electron density that also leads to an
overestimation of nondynamical electron correlation. The
overbinding of hypervalent structures is manifested in both
atomization energies of hypervalent species and in transition
states with hypervalent character, as is shown in detail in
previous works such as refs 5a and 5e.

This LOC, LOC(x)OCT_EXP, is defined as

where NOCT_EXP, analogously to NH_dival in eq 49, is

Here, i is an index that runs over all non-hydrogen atoms,
and ηi is given by

In this formula, n is the number of bonds around an atom
center i, g is the element’s group number on the periodic
table, and “bonds” are defined as for eq 50. This equation
ensures that atoms bonded to a number of elements that
violate their octets are assigned NOCT_EXP ) 1, whereas the
opposite is true for atoms with a number of bonds that are
within their octet.

For example, consider how chlorine is treated in HCl vs
ClF3. Chlorine’s group number in the periodic table, g, is 7.
In HCl, the number of bonds, n, to chlorine is one, and from
the equation above, we have η ) 0. Therefore, NOCT_EXP )
LOC(x)OCT_EXP ) 0; i.e., LOC(x)OCT_EXP is not assigned for
HCl. In ClF3, however, we have n ) 3, and from the equation
above, η ) 1. Therefore, NOCT_EXP ) LOC(x)OCT_EXP ) 1;
i.e., LOC(x)OCT_EXP is assigned for the chlorine of ClF3.

We use these equilibrium values of NOCT_EXP given by the
equations above to determine CLOCOCT_EXP. Specifically,
CLOCOCT_EXP takes on the same general form as LOCOCT_EXP

in eq 53, except that �, which is continuous, is now used in
place of NOCT_EXP, which is discrete.

where

and i is an index that runs over all non-hydrogen atoms, i.e.,
those atoms which are eligible to receive CLOC(x)OCT_EXP.
We define f(NOCT_EXP

eq , NOCT_EXP
ts ) as a function of the

equilibrium and transition state NOCT_EXP values, NOCT_EXP
eq

and NOCT_EXP
ts , respectively. In this manner, the interpolated

value of CLOC(x)OCT_EXP for any intermediate structure x is
a function of the stationary states’ LOCs, LOC(eq)OCT_EXP

and LOC(ts)OCT_EXP. The equilibrium structure is taken as
the reactant for a reactant-side arbitrary structure, or product
for a product-side arbitrary structure.

where f(δx)hyb is as defined in eq 30. As discussed earlier,
f(δx)hyb takes into account the multiple-bond-length depen-
dency of hybridization. Because CLOC(x)OCT_EXP also de-
pends upon multiple bond lengths, f(δx)hyb is employed here.

Inspection of this equation shows that where both the
equilibrium structure (reactant for a reactant-side interpola-
tion, or product for a product-side interpolation) and transi-
tion state do not receive an OCT_EXP correction, NOCT_EXP

eq

) NOCT_EXP
ts ) 0, the interpolated structure, f(NOCT_EXP

eq ,

CLOC(x)H_dival ) NH_dival × CH_dival (52)

LOC(x)OCT_EXP ) NOCT_EXP × COCT_EXP (53)

NOCT_EXP ) ∑
i

ηi (54)

ηi ) {0, if n e 8 - g;
1, if n g (8 - g) + 1

(55)

CLOC(x)OCT_EXP ) � × COCT_EXP (56)

� ) ∑
i

[f(NOCT_EXP
eq , NOCT_EXP

ts )]i (57)

f(NOCT_EXP
eq , NOCT_EXP

ts ) )

{0, for NOCT_EXP
eq ) NOCT_EXP

ts ) 0;

1, for NOCT_EXP
eq ) NOCT_EXP

ts ) 1;
f(δx)hyb, for NOCT_EXP

eq ) 0 and NOCT_EXP
ts ) 1;

1 - f(δx)hyb, for NOCT_EXP
eq ) 1 and NOCT_EXP

ts ) 0

(58)
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NOCT_EXP
ts ) ) 0, does not either. This would apply to the

reaction CH3• + CH2CH2 f CH3CH2CH2• depicted in
Scheme 1, for example. The same holds for the opposite
case. Namely, where both the equilibrium structure and
transition state structure do receive LOC(x)OCT_EXP, so does
the interpolated structure. This would apply to the reaction
SO4

2- + H3O+ f HSO4
- + H2O, for example, where the

sulfur atom merits LOC(x)OCT_EXP throughout the reaction.
For a reaction where the equilibrium structures do not
merit LOC(x)OCT_EXP, yet the transition state does, the
amount of CLOC(x)OCT_EXP the interpolated structure
receives is proportional to f(δx)hyb. Therefore, the amount
of CLOC(x)OCT_EXP increases smoothly toward the transi-
tion-state value as the structure itself becomes more
transition-state-like, as quantified by f(δx)hyb, defined by
eq 30 above. This applies to the reaction FCH3 + Cl- f
F- + CH3Cl, for example, where neither equilibrium
structure (reactant or product) merits LOC(x)OCT_EXP, yet
the transition state does. Lastly, where the equilibrium
structure does merit LOC(x)OCT_EXP but the transition state
does not, the amount of CLOC(x)OCT_EXP decreases
smoothly toward the transition-state value, again as a
function of f(δx)hyb.

None of the reactions in Scheme 2 merit the
CLOC(x)OCT_EXP correction, and hence this specific term
has not yet been tested. However, we anticipate that this
correction will work well judging from the behavior of
all of the other similar terms.

III.F. CLOCs for Environment, CLOC(x)environ. We
have also argued that the presence of neighboring bonds
connected to a particular base bond contributes to systematic
error in the quantification of nondynamical correlation of
that base bond,5 and we introduce the LOC(x)environ term,
LOC(x)ESBC, to capture these effects. This term arises from
the fact that an electron in the base bond can make an
excursion to a neighboring bond, increasing its nondynamical
correlation energy, particularly if it is a long bond, vs a single
bond to hydrogen, for example.

We stated in section III.A that it is necessary that CLOC(x)
agrees with LOC(x) where x is a stationary point (reactant,
product, or transition state). To meet this requirement, we
found it necessary to slightly modify the way the previously
defined LOC(x)ESBC parameter was extended to transition
states in the latest LOC publication.5e Let us begin with a
detailed explanation of how LOC(x)ESBC was assigned to
transition states in the previous work5e to understand why a
modification was necessary.

While the definition of LOC(x)ESBC for reactants and
products is straightforward, formulating an implementation
for transition states is less obvious. For example, consider
the Diels-Alder reaction between butadiene and ethene
(reaction a in Scheme 2). The reactant and product are
readily assigned NESBC ) 0 and 8, respectively. Yet, the
LOC(x)ESBC assignment for the transition state is not
immediately obvious.

Because LOC(x)ESBC is applied only for neighboring single
bonds, the bond order si for each bond is transformed into a
value to describe its percent single bond character, f(si), on

a scale from 0-1; 1 being a pure single bond and 0 being
no bond or a pure double bond.

Here, γ here is chosen to be 3 such that f(si) ≈ 0.5 for si )
0.5.

The NESBC for any bond i, (NESBC)i, is then given by the
sum of f(sj) over all neighboring bonds j.

and the total NESBC for the system is then the sum over all
(NESBC)i for each bond i.

Using the above formulas, we find that the reactant and
transition state of reaction a in Scheme 2 have NESBC ) 0 and
6, respectively. In Figure 5, we show the results of using the
formulations given in eqs 59-61 to interpolate points interme-
diate between the reactant and transition state for this reaction
in red. Importantly, we see that NESBC f 2 as the reaction
coordinate f 0. Recall that for the reactant, NESBC ) 0, and
therefore, CLOC(x) does not agree with LOC(x) as we approach
the reactant. Yet, we stated in section III.A that CLOC(x) must
agree with LOC(x) where x is a stationary point.

To force agreement between CLOC(x) and LOC(x) at the
reactant and product, we have changed the formulation of
LOC(x)ESBC for transition states from that described by eqs
59-61. In the previous publication,5e it was only the
neighboring bonds and their bond orders, sj, which deter-
mined NESBC for the bond under consideration, but not the
bond order of that bond itself, si (see eq 60). In the latest
implementation, both the bond order, si, of the bond under
consideration and that of its neighboring bond, sj, are
considered when determining NESBC. Specifically, both f(si)
and f(sj), defined in eq 59, are multiplied to give a number
that reflects cumulative percent single bond character for the
pair, πij

Figure 5. NESBC vs intrinsic reaction coordinate (IRC) for
reactant to transition state of reaction a in Scheme 2. NESBC

as defined in eqs 59-61 is shown in red, while NESBC as
defined by eqs 59 and 62-64 is shown in green.

f(si) ) e-γ(si-1)2
(59)

(NESBC)i ) ∑
j

f(sj) (60)

NESBC ) ∑
i

(NESBC)i (61)
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In this manner, two neighboring single bonds receive the
maximum value (πij ) 1), while a neighboring single bond
and “half bond” will receive a lesser value (πij ) 1/2), and
two neighboring “half” bonds will receive a lesser value still
(πij ) 1/4), for example. This reflects the fact that the more
single-bond-like the neighboring bonds are, the more excur-
sions are possible from a base bond into these neighboring
bonds, and hence the more correction is necessary to account
for these excursions.

For each bond i, the sum of all πij values is taken across
all neighboring bonds j, which produces the total NESBC for
that bond, NESBC(πij).

The increase in πij with increasing single-bond-character is
thus utilized here to also assign larger NESBC(πij) for systems
with more neighboring bonds with high single-bond character.

All NESBC(πij)’s for each unique ij pair are summed to give
the final NESBC for that system.

The results of the new definition of NESBC, as given in eqs
59 and 62-64, are shown in Figure 5. Notice that while the
previous definition of NESBC (shown in red in Figure 5) did
not have the proper behavior, i.e., NESBC did not approach
zero as the reaction coordinatef 0, this definition of NESBC

(shown in green in Figure 5) does indeed have the proper
behavior, i.e., NESBC f 0 as the reaction coordinate f 0.
Therefore, we have satisfied the requirement that CLOC(x)
agree with LOC(x) where x is a stationary point, at least for
x being the reactant or product.

Inspection of Figure 5 also shows that NESBC for the
transition state of this reaction has changed, from NESBC )
6 in the old definition to NESBC ) 3 in the new definition.
As with any parametrization, we are free to change the
definition of how parameters are applied (Nk in eq 1) so long
as we reoptimize the values of the parameters (Ck in eq 1)
in accordance with their new definitions. Therefore, the
newly defined application of NESBC to transition states
necessitated reoptimizing the values of the transition-state
specific parameters, Ck, to optimally reduce the B3LYP error
in barrier heights. The updated values, which are only slightly
different than those previously published, and all LOC
parameter values and definitions can be found in the
Supporting Information. Note that while the individual
B3LYP-LOC barrier heights have changed slightly, the
overall performance of B3LYP-LOC remains unchanged.
That is, the LOCs still produce a dramatic reduction in the
B3LYP barrier height errors and predict barrier heights within
or near chemical accuracy (traditionally taken as e1 kcal/
mol) across a broad spectrum of reactions.

III.G. CLOC for Charge Transfer, CLOC(x)CT. In
section III.B, we argue that as the bond length increases,
nondynamical correlation becomes more negative (as the
electrons have more room to avoid each other), and DFT

systematically underestimates this effect with increasing
severity. An extreme example of this is manifest in systems
such as carbon monoxide, -CtO+, or sodium chloride,
Na+Cl-, which have zero overall formal charge but nonzero
formal charge on individual atoms. In these systems, the
localized orbitals are highly ionic in character and hence
compactly organized around one of the two atoms, and the
bonds are also relatively long in comparison to the size of
the orbitals in which the electron pairs are localized. Because
this is a severe example of underbinding, this situation when
it arises receives its own special parameter, LOC(x)CT,
according to

where CCT is the optimized value of the LOC(x)CT parameter
(see the Supporting Information) and NCT is given by

Here, i and j are indices that run over all neighboring atom
pairs and f(q) is a function of the formal charge q on an
atom (as defined in eq 31) given by

An inspection of this equation shows that NCT and LOC(x)CT,
by extension, are nonzero only where two neighboring atoms
both have nonzero charge.

The continuous version of LOC(x)CT, CLOC(x)CT, may be
written analogously as

where NCT is given still by eq 66 and only the definition of
f(q) is modified to allow for continuous representation of
partial formal charges.

where γ, as before, is chosen to be 3.0 such that f(|q|) ≈ 0.5
for |q| ) 0.5. This continuous definition of f(q) is identical
to the former discrete version with the exception that it allows
for noninteger charges on atoms. Inspection of this equation
further shows that as the absolute values of charges on any
two neighboring atoms approach 1, |q| f 1, then f(q) f 1,
and thus NCT f 1, its maximal value. Therefore, we are
equipped to treat noninteger partial charges in a smooth and
continuous fashion and give only the maximal value of NCT

to systems with integer values of formal charge on neighbor-
ing atoms.

Because none of the reactions in Scheme 2 merit the
CLOC(x)CT correction, this specific term has not yet been
tested. However, we anticipate its correct behavior on account
of the behavior of all of the other similar terms.

III.H. Total CLOC(x). As stated in section III.A, the total
CLOC(x) is given by the sum of its constituents:

πij ) f(si) × f(sj) (62)

NESBC(πIj) ) ∑
i<j

(πij) (63)

NESBC ) ∑
i<j

NESBC(πij) (64)

LOC(x)CT ) NCT × CCT (65)

NCT ) ∑
i<j

f(qi) × f(qj) (66)

f(q) ) {0,
1,

for q ) 0;
for |q| g 1

(67)

CLOC(x)CT ) NCT × CCT (68)

f(q) ) {0,

e-γ(|q| - 1)2,
1,

for q ) 0;
for 0 < |q| < 1;
for |q| g 1

(69)
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Therefore, to arrive at the total CLOC(x) for any arbitrary
x, the individual components of this expression are calculated
according to the prescriptions given in sections III.B-III.G,
and summed over. This CLOC(x) may then be used directly
to obtain more accurate relative energies, as described in
section III.A.

Once CLOC(x) is known for any arbitrary x, we may
define gradients of the B3LYP-CLOC functional. They are
given according to the formula

III.I. Computational Methods. All intrinsic reaction
coordinate (IRC) scans were performed at the B3LYP/6-
31+G** level using the computational package Jaguar 7.6.9

(In previous LOC publications,5 all geometry optimizations
and transition state searches were performed at the B3LYP/
6-31G* level; however, we found that using this slightly
larger basis greatly improved the ease with which stationary
points could be located, without substantially increasing
computational cost.) These geometries were then used to
perform single-point energy calculations at the B3LYP/6-
311++G(3df,3pd) and M06-2X/6-311++G(3df,3pd) levels,
also within Jaguar; at the RCCSD(T)/cc-pVTZ level using
MolPro 2006.1;8 and at the BW2 post-HF level using the
code provided by Hans Joachim-Werner for reaction g.14

Following Joachim-Werner’s precedent for this reaction, a
mixed basis was used in which chlorine was treated with
the aug-cc-pV5Z[8s7p5d4f3g] basis, and hydrogens were
treated with the aug-cc-pVQZ[5s4p3d2f] basis.

The potential energy curves obtained with the post-HF,
B3LYP, M06-2X, and B3LYP-CLOC methods were aligned
by relative energy. Specifically, the energy of the product(s)
was subtracted from the energy at every point along the curve
such that the energy of the product(s) for all four curves
was strictly zero, and all other energies were given with
respect to the product(s) energy.

The B3LYP-CLOC curves were generated directly from
the B3LYP curves with the simple addition of the numerical
CLOC. For example, to compute the B3LYP-CLOC energy
for an arbitrary point x on the reaction profile, EB3LYP-CLOC(x),
the CLOC at point x, CLOC(x), had to be initially obtained.
The B3LYP-CLOC energy at point x is then the sum of the
B3LYP energy and CLOC.

Since all reaction profile curves have to be scaled by the
subtraction of the product(s) energy, we must know the
B3LYP-CLOC energy of the product(s). This is computed
similarly to the description given above.

Finally, the energies along the B3LYP-CLOC curves are given
by the difference in EB3LYP-CLOC(x) and EB3LYP-CLOC(product).

These are the final points given in all of the graphs and tables in
this work.

All numerical CLOCs can be computed with a simple
script.15 As input, a reaction coordinate (defined by reactant,
transition state, and product structures) and an arbitrary
structure along that coordinate are required, and CLOCs for
all four structures are produced in the output.

IV. Results and Discussion

To assess the effectiveness of the CLOC approach, we
surveyed reaction profiles for the seven reactions shown in
Scheme 2. Three functionalssB3LYP, M06-2X, and B3LYP-
CLOC developed hereinswere tested against post-HF level
calculations, with the resulting plots shown in Figure 6. Table
6 and Figure 7 show the mean unsigned errors (MUEs) along
each reaction profile for all reactions and functionals studied.
These numbers reflect the disagreement between post-HF and
DFT at every point along the reaction profile. The mean value
of all of these MUEs, MMUE(overall), is also given.

While MMUE(overall) reflects the performance across the
entire reaction coordinate, the performance at the stationary
points for most practical applications is more critical than
the performance at intermediate points. Therefore, the
differences in relative SCF energies at the stationary points,
∆Escf, are compared to the values at the post-HF level in
Table 7. Specifically, the differences in transition state and
equilibrium SCF energies, ∆Escf(eqfts), where the equilib-
rium structure may be either reactant or product, were
tabulated in addition to the differences in reactant and product
SCF energies, ∆Escf(rfp). The mean unsigned errors in these
two values, ∆Escf(eqfts) and ∆Escf(rfp), across all seven
reactions were then tabulated for each DFT method to give
the final values shown in Table 7, MUE[∆Escf(eqfts)] and
MUE[∆Escf(rfp)].

An inspection of the plots in Figure 6 not surprisingly
shows that while the B3LYP curves have the qualitatively
correct shape compared to the post-HF standard in many
cases, there still remain large quantitative errors at many
points along the reaction coordinate. This is also reflected
by the relatively large values of MUE[∆Escf(eqfts)] and
MUE[∆Escf(rfp)] given in Table 7. Perhaps fortuitously,
there are some reactions for which the B3LYP and post-HF
curves are nearly convergent, at least for part of the reaction
profile, i.e., reaction d, CH3• + CH2CH2. However, there are
other curves where serious quantitative disagreement between
B3LYP and the post-HF method is observed, i.e., reaction
g, H2+Cl.

Further inspection of Figures 6 and 7 and Tables 6 and 7
shows that, on average, M06-2X outperforms B3LYP across
all stationary and intermediate structures. This is reflected
by lower values of MUE[∆Escf(eqfts)] and MUE[∆Escf-
(rfp)] in Table 7 and MMUE(overall) in Table 6 for M06-
2X vs B3LYP. Yet, we see that B3LYP performs as well

CLOC(x) ) CLOC(x)bond + CLOC(x)hyb +
CLOC(x)radical + CLOC(x)hyperval + CLOC(x)environ +

CLOC(x)CT (70)

∇EB3LYP-CLOC(x) ) ∇[EB3LYP(x) + CLOC(x)] )
∇EB3LYP(x) + ∇CLOC(x) (71)

EB3LYP(x) + CLOC(x) ) EB3LYP-CLOC(x) (72)

EB3LYP(product) + CLOC(product) )
EB3LYP-CLOC(product) (73)

EB3LYP-CLOC
relative (x) ) EB3LYP-CLOC(x) - EB3LYP-CLOC(product)

(74)
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as, or better than, M06-2X for both the sigmatropic shift
(reaction c) and carbon radical reaction (reaction d) in Table
6 when we consider the MUE along the entire reaction
coordinate.

Similarly to M06-2X, B3LYP-CLOC performs better than
B3LYP along the whole reaction coordinate for many
different reaction types. The same trend holds for both
∆Escf(eqfts) and ∆Escf(rfp). [Notably, however, all func-

Figure 6. Reaction profile plots for the reactions of Scheme 2. All plots show relative SCF energies with respect to intrinsic
reaction coordinate (IRC), where the points on the coordinate are labeled R, TS, and P for reactant, transition state, and product,
respectively. The plots are constructed for the following reactions: (a) Diels-Alder, (b) electrocyclic, (c) sigmatropic shift, (d)
carbon radical reaction, and hydrogen radical reactions (e) H2 + H, (f) H2 + OH, and (g) H2 + Cl. The curves plotted are B3LYP
(green), B3LYP-CLOC (red), post-HF (magenta), and M06-2X (blue). For reaction g, B3LYP-CLOC with a shifted IRC for the
transition state is also plotted in teal. Note that in this plot, the B3LYP-optimized transition state occurs at IRC ) 0.0, while the
post-HF transition state occurs at IRC ) 0.4. Post-HF plots for reactions a-f are at the RCCSD(T) level, while the post-HF plot
for reaction g is at the BW2 level.
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tionals tested have difficulty with reaction g, H2 + Cl. This
will be discussed further below.] While M06-2X is outper-
formed by B3LYP for both reactions c and d, B3LYP-CLOC
is only outperformed by B3LYP in the case of reaction d.
Arguably, this is a case in which B3LYP performs anomalously
well. An inspection of Table 6 shows that B3LYP’s perfor-
mance for reaction d is far better than for all the other reactions
studied. Additionally, examination of Tables 6 and 7 and
Figure 7 reveals that the performance of B3LYP-CLOC rivals
that of M06-2X with respect to MUE for the individual cases
as well as all cases combined. This is also true for the
MUE[∆Escf(eqfts)] and MUE[∆Escf(rfp)], as shown in
Table 7.

Overall, the performance of B3LYP-CLOC rivals that of
M06-2X. Both methods exhibit similar accuracy over the entire
test set, but M06-2X performs appreciably better than B3LYP-
CLOC for reactions b and g, whereas B3LYP-CLOC performs
appreciably better than M06-2X for reactions c, e, and f. More
reactions in addition to those examined in this work will have
to be studied before a broad conclusion about the relative
performance of these two functionals may be drawn.

Reaction g, as stated previously, is particularly problem-
atic. This exception may be explained at least in part by the
fact that the B3LYP and post-HF transition states’ geometries
differ markedly from one another, as shown in Table 8. In
fact, an inspection of the reaction profile in Figure 6g shows
that the post-HF transition state actually occurs at IRC )
0.4, where the geometry more closely matches that found
by the post-HF transition state search. Interestingly, the same
shift of transition state along the reaction coordinate is
observed for M06-2X, where the transition state occurs at
IRC ) 0.3. We observe that all three tested DFT methodss
B3LYP, B3LYP-CLOC, and M06-2Xshave difficulty in
accurately predicting the transition state geometry for this
complicated case, where notably M06-2X performs better
than B3LYP and B3LYP-CLOC.

Since our algorithm requires reactant, product, and transition
state structures as input to handle all intermediate points along
the reaction coordinate, and we know that the “true” transition
state geometry resembles that at IRC ) 0.4, we can instead
provide this alternate geometry as the input transition state
geometry to our algorithm and therefore shift the location of
the transition state on the reaction coordinate accordingly. This
is indeed what we have done to produce the teal curve in Figure
6g. Note that all points along the reaction profile now better
approximate the post-HF curve. A complete solution to this
problem would not require prior knowledge of the post-HF
geometry. Specifically, we ultimately seek a method whereby
we can produce energy curves as accurate as post-HF methods
without prior knowledge of the energy curves or geometries
produced by these methods whatsoever.

Disagreement between B3LYP and “true” transition-state
geometries is not without precedent. This same behavior is
observed for the highly analogous reaction H2 + F, where
transition states predicted by B3LYP and post-HF methods
differ substantially in bond lengths and angles.15

The above analysis suggests that the inability of DFT to treat
both these problematic cases stems partly from defective
reproduction of geometries predicted with high-level post-HF
methods. One possible solution is the alteration of DFT
functionals in such a way that they produce geometries more
closely matching the post-HF ones, presumably also leading to
more accurate energies. This can be achieved via alteration of

Table 6. Mean Unsigned Errors (MUEs)a in kcal/mol along
Entire Reaction Profile

reaction reaction type B3LYP M06-2X B3LYP-CLOC

a Diels-Alder 5.69 1.27 1.39
b electrocyclic 2.30 0.62 1.31
c sigmatropic shift 1.33 1.35 0.57
d carbon radical 0.36 0.78 0.56
e H2 + H 2.66b 1.43b 0.55b

f H2 + OH 2.12 0.89 0.34
g H2 + Cl 2.34 0.93 2.28 (1.41c)

MMUE(overall)d 2.40 1.04 1.00 (0.88c)

a The deviation between post-HF and DFT energies at every
point along the reaction coordinate was computed. The absolute
values of these deviations were then averaged to give the mean
unsigned error, MUE, along the entire curve. b All data computed
using only data along the range -1.4 e IRC e 1.4 because
M06-2X data points outside this range could not be obtained due
to convergence difficulties. c Computed using the shifted
B3LYP-CLOC data for the reaction H2 + Cl. d Mean of MUEs for
reactions a-g, i.e., the values given in the rows directly above.

Figure 7. Mean unsigned error (MUE) vs reaction type for
all reactions and functionals tested in this study as shown in
Table 6. Functionals include B3LYP (green), M06-2X (blue),
and B3LYP-CLOC (red). Reactions include (a) Diels-Alder,
(b) electrocyclic, (c) sigmatropic shift, (d) carbon radical, (e)
H2 + H, (f) H2 + OH, and (g) H2 + Cl.

Table 7. Mean Unsigned Errors (MUEs) in kcal/mol for
∆Escf(eqfts) and ∆Escf(rfp)

B3LYP M06-2X B3LYP-CLOC

MUE[∆Escf(eqfts)]a 4.1 1.3 1.5
MUE[∆Escf(rfp)]b 3.4 0.7 0.3

a Mean unsigned error of ∆Escf(eqfts), where eq may be either
equilibrium structure, reactant(s), or product(s), for reactions a-g.
Individual errors for ∆Escf(eqfts) given in Supporting Information.
All ∆Escf(eqfts) were computed using B3LYP geometries. b Mean
unsigned error of ∆Escf(rfp) for reactions a-g. Individual errors
for ∆Escf(rfp) given in Supporting Information. All ∆Escf(rfp) were
computed using B3LYP geometries.

Table 8. Geometry of H2 + Cl Transition State

bond length (Å)

method H-H H-Cl

BW2a 1.00 1.46
B3LYP 1.29 1.34
B3LYP-CLOC 1.29 1.34

a Taken as the geometry at IRC ) 0.4 in Figure 6g.
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the DFT gradients, ∇EDFT. As stated in section III.H, gradients
for the B3LYP-CLOC functional are given according to

In this regard, it is important to consider the relative
magnitudes of the two terms on the right-hand side of eq 75.
Specifically, ∇EB3LYP(x) is often much larger than ∇CLOC(x),
which is only ever a few killocalories per mole, such that
∇EB3LYP-CLOC(x) ≈ ∇EB3LYP(x). In fact, we see no change
whatsoever in the transition state geometries, as ∇EB3LYP(x) )
∇EB3LYP-CLOC(x). This is clear upon inspection of Table 8, where
we see that the geometry of the H2 + Cl transition state is
identical for both B3LYP and B3LYP-CLOC. For non-
transition-state structures, we expect only very small changes
in the B3LYP-CLOC geometries vs B3LYP.

Therefore, the power of the B3LYP-CLOC method does
not lie in its ability to produce more accurate geometries,
but rather in its ability to produce more accurate energies.
This is most useful for reactions where B3LYP already
produces reasonably accurate geometries. Fortunately, most
reactions of practical interest fall into this category. For
example, note that the larger systems employed in this study,
such as reactions a-d in Scheme 2, do not suffer from the
difficulties encountered with H2 + Cl and H2 + F. A
particularly attractive characteristic of our method is therefore
its ability to deliver highly accurate, yet computationally
inexpensive energies for larger systems.

V. Conclusions
In this work, we have shown how simple empirical localized
orbital corrections (LOCs) can be generalized to formulate
a continuous implementation (CLOC) that is defined through-
out a reaction profile. These corrections were applied
specifically to the B3LYP functional, as this functional has
shown itself most amenable to this correction scheme. The
resultant method, B3LYP-CLOC, gives more accurate en-
ergetics in comparison to B3LYP, and its accuracy rivals
that of M06-2X for the test cases examined. Furthermore,
negligible additional computational cost is required over
standard B3LYP calculations, and convergence of geometry
optimizations is facile. The accuracy is best where B3LYP
already produces reasonable geometries and assignment of
Lewis structures is straightforward.

Future work will focus on extending this implementation
to the treatment of ionic reactions in addition to the neutral
reactions studied herein. More reaction profiles should be
studied to test the robustness of this method.
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Abstract: We test local and semilocal approximations of the exchange potential for a variety
of systems including atoms, molecules, and atomic chains. In particular, we focus on a recent
universal extension of the Becke-Johnson exchange potential [Räsänen, E.; Pittalis, S.; Proetto,
C. R. J. Chem. Phys. 2010, 132, 044112]. It is shown that when this potential is used together
with the Becke-Roussel approximation to the Slater potential [Becke, A. D.; Roussel, M. R.
Phys. Rev. A 1989, 39, 3761-3767], a good overall agreement is obtained with experimental
and numerically exact results for several systems, and with a moderate computational cost.
Thus, this approximation is a very promising candidate in the quest for a simple and all-around
semilocal potential.

1. Introduction

Density-functional theory1,2 (DFT) has become the standard
tool both in quantum chemistry and in atomic, molecular,
and solid-state physics. The practical applicability of DFT
crucially depends on the approximation for the exchange-
correlation (xc) energy functional. The “Jacob’s ladder” of
functionals developed in the past few decades3 has posed
the following well-known problem: by climbing successive
rungs of the ladder, one increases the accuracy of the
functional, but one also increases substantially the compu-
tational burden of the method. Finding a balance between
accuracy and efficiency, together with uniVersality (which

is the ideal ability to deal equally well with any kind of
system), has remained a major challenge in DFT.

As the simplest density functionals, occupying the first
two rungs of Jacob’s ladder, the local density approximation
(LDA) and generalized-gradient approximations (GGA) are
numerically efficient and surprisingly accurate for many
(strongly inhomogeneous) systems. However, both of these
families of functionals exhibit well-known failures in the
calculation of, e.g., band gaps of semiconductors and
insulators,4 the response to electric fields,5 etc. The problems
are particularly dramatic in systems where long-range
interactions play a crucial role, i.e., elongated molecules and
atomic chains.6-13 The main origin for these errors is the
wrong (exponential) asymptotic behavior and the lack of
derivative discontinuity in the xc potential.

Climbing the ladder further, the optimized-effective-
potential (OEP) method14-16 or its simplification within the
Krieger-Li-Iafrate (KLI) approximation17 provide, in prin-
ciple, access to the exact exchange energy and potential
within DFT. Thus, as long as the electronic correlation is
not significant, OEP and KLI are free from the failures
mentioned above. However, as nonlocal orbital functionals,
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they are computationally demanding and therefore usable
only for systems containing a small number of particles.

TobridgethegapbetweentheGGAandOEP,meta-GGAs18,19

are appealing candidates. They supplement the GGA by
further semilocal information through the kinetic-energy
density and/or the Laplacian of the density, and, in some
cases, also through the paramagnetic current density. Re-
cently, Räsänen, Pittalis, and Proetto20 (RPP) developed a
meta-GGA for the exchange part of the xc potential. The
RPP potential introduces a number of important constraints
and features (see below) and performs well for, e.g., non-
Coulombic systems and atomic chains. It is based on the
Becke-Johnson (BJ) potential21sa simple meta-GGA close
to the OEP accuracy for atomssbut, in contrast to BJ, the
RPP potential is fully gauge-invariant, exact for any one-
particle system, and has the correct asymptotic behavior for
any N-particle system.

Also, other modifications to the BJ potential have been
suggested to improve the performance for atomic chains22

and band gaps.23 In fact, the latter modification23 allows the
calculation of band gaps of semiconductors and insulators
with an error on the same order of GW calculations, but at
a very small fraction of the GW computational time.

In this paper, we test the RPP potential,20 used together
with the Becke-Roussel (BR) approximation to the Slater
potential,24 for a large variety of systems. We compare this
approximation to the BJ one, also complemented by the BR
potential. In order to allow for a comparison to experimental
reference data, we have added to the above exchange
potentials the correlation within the LDA. We compare the
results also against the LB94 potential of van Leeuwen and
Baerends25 (a GGA with correct asymptotic behavior also
including correlation). Moreover, for completeness, we
include results calculated with standard LDA and GGA
functionals. As a reference, we use experimental or high-
quality ab initio data. In some cases, the performance of the
exchange potentials alone, i.e., without the addition of
correlation, is compared to the exact-exchange OEP results.
The combination of RPP and BR potentials is found to yield
the best overall performance of the tested approximations,
and thus it provides a promising step toward an all-around
semilocal exchange potential in DFT.

2. Theory

2.1. Exact Exchange. In a majority of atomic, molecular,
and solid-state systems, the electronic exchange gives, in
absolute terms, a much larger contribution to (most) observ-
ables than the correlation. Therefore, in practical applications,
the exchange is the most important term to be approximated
in the functional. The exact exchange energy in Hartree
atomic units (au) is written as

and its functional derivative gives the Kohn-Sham (KS)
exchange potential as Vxσ(r) ) δEx/δFσ(r). These quantities

can be rigorously calculated with the OEP method14-16

through an integral equation that has to be solved together
with the KS equations.

At this point, it is useful to write the (KS) exchange
potential as a sum

where

is the Slater potential, i.e., the average of the Fock potential
felt by the electrons, and ∆Vxσ

OEP(r) is the exact (OEP)
contribution,14-16 which can be decomposed into the
Krieger-Li-Iafrate17 (KLI) part and the orbital shifts. Apart
from, e.g., atomic chains,6 the orbital shifts in a ground-
state calculation are usually of minor importance and
therefore neglected, leading to so-called KLI approximation.
This relieves the computational burden of solving the integral
equation, but the tedious integrals in the Slater potential are
still to be calculated. Therefore, even within the KLI
approximation, the efficiency of an OEP calculation is far
from that of semilocal functionals.

2.2. Becke-Johnson Potential. The BJ potential21 is a
simple approximation to the OEP contribution in eq 2:

where

is (twice) the spin-dependent kinetic-energy density, and C∆V

) �[5/(12π2)]. The BJ potential is exact for the hydrogen
atom and for the homogeneous electron gas, and regarding
quantum chemistry applications, it has several beneficial
properties. First, it yields the atomic step structure in the
exchange potential (which was the main motivation for the
approximation) very accurately.21 Second, it has the deriva-
tive discontinuity for fractional particle numbers.22

To improve the numerical efficiency of this potential, one
often also replaces the Slater potential Vxσ

SL(r) with the
Becke-Roussel potential.24 This is again a meta-GGA
potential, written in terms of ∇2Fσ and of τσ, that reproduces
to a very high precision the Slater potential for atoms.

2.3. Universal Extension to Becke-Johnson. The main
limitations of the BJ potential are that it is not gauge-invariant
and that it is not exact for all one-particle systems. Both
limitations were recently removed in the extension by RPP,20

which proposed the form

where

Ex[Fσ] )

- 1
2 ∑

σ)v,V
∑
j,k)1

Nσ ∫ d3r∫ d3r'
�jσ
/ (r) �kσ

/ (r') �jσ(r') �kσ(r)

|r - r'|
(1)

Vxσ(r) ) Vxσ
SL(r) + ∆Vxσ

OEP(r)

) Vxσ
SL(r) + ∆Vxσ

KLI(r) + ∆Vxσ
OS(r)

(2)

Vxσ
SL(r) ) - ∑

j,k)1

Nσ ∫ d3r'
�jσ
/ (r) �kσ

/ (r') �jσ(r') �kσ(r)

Fσ(r)|r - r'|
(3)

∆Vxσ
OEP(r) ≈ ∆Vxσ

BJ(r) ) C∆V�τσ(r)
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(4)

τσ(r) ) ∑
j)1
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∆Vxσ
OEP(r) ≈ ∆Vxσ

RPP(r) ) C∆V�Dσ(r)

Fσ(r)
(6)
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describes the local curvature of the exchange (Fermi) hole.26

This quantity has already been useful in the derivation of
several functionals24,27-31 and is the key ingredient of the
electron-localization function,32-34 a standard tool used to
analyze bonding in electronic systems. Finally, the spin-
dependent paramagnetic current density is defined as

The RPP approximation is gauge-invariant, and it is exact
for all one-particle systems. Furthermore, it has a correct
asymptotic limit for finite N -electron systems (except on
nodal surfaces of the highest occupied orbitals35,36). The
universality of the approach, whose principles have also been
shown to work in two dimensions,37 is reflected in a resulting
potential that can be applied reasonably well to any kind of
system. For example, the RPP potential has been seen to
reproduce well the KLI potential in hydrogen chains in
electric fields and in Hooke’s atoms subject to magnetic
fields.20 The present study aims at further evaluating the
capability of this approximation for atoms, small molecules,
and atomic chains.

3. Numerical Procedure

The evaluation of the Slater part in the BJ21 and RPP20

potentials is computationally more demanding than the
evaluation of the correction terms ∆Vxσ

BJ and ∆Vxσ
RPP. Never-

theless, as already pointed out by Becke and Johnson,21 it is
possible to approximate the Slater part by using the semilocal
Becke-Roussel (BR) exchange-energy functional.24 In this
way, the cost of evaluating the full BJ and RPP potentials
becomes similar to that of a usual LDA or GGA. To avoid
any ambiguity, we will hereafter denote the BJ and RPP
potentials, where the Slater part was replaced by the BR
potential, as BJBR and RPPBR, respectively.

When using experimental results as a reference, it is
necessary to add a correlation contribution to the BJBR and
RPPBR potentials for a proper comparison. We use the
correlation in the LDA level within the Perdew-Wang38

(PW) form. The results are compared also to the standard
LDAswith the PW parametrization for the correlation part;
the GGA of Perdew, Burke, and Ernzerhof39 (PBE); and the
GGA of van Leeuwen and Baerends25 (LB94)sagain using
the PW parametrization for the LDA part of the potential.
In all cases, we have applied the potentials self-consistently
in the KS-DFT framework. Although, in the case of PBE,
the correlation functional used is not the same as in the other
cases, we expect this fact to result in negligible differences
in the quantities and systems studied in this work.

In the case of atoms and hydrogen chains, calculations
are also performed using exchange-only potentials. Results
are then compared with exact-exchange OEP data available
in the literature. Besides the BJBR and RPPBR potentials,
we also performed these calculations using the exchange part
of the LDA (xLDA) and of the PBE (xPBE).

It is important to bear in mind that BJ, RPP, and LB94
are such approximations to the exchange (or xc) potential
that are not functional derivatives of corresponding exchange
(or xc) energies.40 Here, we focus on fairly standard
quantities that may be accessed without the computation of
total energies. These quantities include ionization potentials
and electronic affinities of atoms, ionization potentials and
dipole polarizabilities of small molecules, and longitudinal
polarizabilities of hydrogen chains. We believe that these
benchmarks provide us with a fairly complete view on the
properties of different approximations considered in this
work.

All of the single-atom calculations are performed with the
APE code,41 while molecules and atomic chains are dealt
with the octopus code.42 In the latter case, the electron-ion
interaction is handled through norm-conserving pseudopo-
tentials generated with APE for each functional and ap-
proximation studied in this work.

4. Results

4.1. Atoms. First, we consider single atoms and focus on
the ionization energies and electron affinities (see Table 1).
There are several ways to estimate these quantities within
DFT. The most direct one is to calculate the differences in
total energy of both the neutral atom and its anion and cation,
respectively. In this way, traditional LDA and GGA func-
tionals usually yield quite good ionization potentials. Electron
affinities are more complicated as often LDAs and GGAs
fail to bind the extra electron.

The other approach, the one used in this work, is to look
at the KS eigenenergy of the highest occupied atomic orbital
(HOMO), which should be equal to the negative of the
ionization potential. The electron affinity is computed simply
from the ionization potential of the respective anion. This
method samples much better the quality of the potential, and
it is particularly sensitive to the asymptotic description of
the potential.

As known from previous studies,25 the LDA and PBE
perform poorly for the ionization potential: the mean absolute
error (last row of Table 1) is larger than 40% for this set of
atoms. The result indicates the crucial role of the correct
asymptotic behavior in the exchange potential. The decay
of the xc potential is properly described by the LB94
potential showing good performance. For the same reason,
good results have been obtained also with KLI-CSsa
combination of KLI17 for the exchange and the
Colle-Salvetti43 functional for the correlationsas reported
by Grabo and Gross.44 It seems that RPPBR-PW is slightly
more accurate than the original BJBR-PW potential. When
compared against exact-exchange OEP results,45 xLDA and
xPBE perform poorly, while BJBR and RPPBR perform
better, the latter again being more accurate.

As noted already by Becke and Johnson,21 the BJ exchange
potential goes asymptotically to a finite (nonzero) constant.
In principle, this constant only redefines the zero of orbital
energy and should have no implication in the quality of the
results, but it has to be taken into account when computing
the ionization potential. This can be done by subtracting the

Dσ(r) ) τσ(r) - 1
4

|∇Fσ(r)|2

Fσ(r)
-

|jpσ(r)|2

Fσ(r)
(7)

jpσ(r) ) 1
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value of the constant, which can be obtained from the
asymptotic expansion of the density and the kinetic energy
density, from the value of the KS eigenenergy of the HOMO.
A perfectly equivalent procedure is to shift the BJ exchange
potential so that it goes asymptotically to zero. In the case
of spin-uncompensated atoms, the constant depends on spin.
Then, it is possible to shift the spin-up and spin-down
potentials by different amounts, provided that this does not
imply a change in the occupancies of the orbitals. In this
work, we have chosen to shift the BJ potential when
computing ionization potentials and electron affinities. For
some selected cases, we also performed calculations without
shifting the potential and verified that the results obtained
with both methods were identical.

The electron affinities for our set of atoms are given in
Table 2. As is well-known, the LDA and most GGAs do
not give bound solutions for most negative ions, so we chose
not to include them in the table. In most cases, BJBR-PW
failed to give bound solutions for the anions, while for
RPPBR-PW, this happened only in a few cases. Considering
only the cases where RPPBR-PW gave bound solutions, the

deviation from the exact values was around 28%. It seems
that LB94, having a similar overall accuracy, works better
for small ions, whereas RPPBR-PW increases its accuracy
for larger systems. For example, for the last three atoms in
Table 2 (P, S, Cl), RPPBR-PW has an error of only a few
percent. Interestingly, KLI-CS results deviate by more than
60% from the exact values. This might be due to the poor
compatibility between the exact nonlocal exchange and the
correlation part, when the asymptotic regime is strongly
dominated by the ionic HOMO.

4.2. Molecules. Next, we test the approximations for a
large set of small molecules by computing ionization
potentials and static (isotropic) dipole polarizabilities. The
ionization potentials are obtained from the HOMO as in the
previous section, while the polarizabilites are computed as
a derivative of the dipole moment of the system with respect
to the applied electric field. The ionization potentials are

Table 1. Ionization Potentials from the Highest Occupied Kohn-Sham Orbital (in au)a

atom xLDA xPBE BJBR RPPBR OEPb LDA PBE LB94 KLI-CSc BJBR-PW RPPBR-PW expt.d

He 0.517 0.553 0.857 0.924 0.918 0.570 0.585 0.851 0.945 0.922 0.982 0.903
Li 0.100 0.109 0.254 0.183 0.196 0.116 0.111 0.193 0.200 0.276 0.201 0.198
Be 0.170 0.182 0.355 0.300 0.309 0.206 0.201 0.321 0.329 0.401 0.338 0.343
B 0.120 0.128 0.279 0.226 0.151 0.143 0.296 0.328 0.321 0.260 0.305
C 0.196 0.204 0.399 0.332 0.227 0.218 0.401 0.448 0.440 0.366 0.414
N 0.276 0.285 0.526 0.451 0.571 0.309 0.297 0.510 0.579 0.567 0.486 0.534
O 0.210 0.224 0.391 0.383 0.272 0.266 0.516 0.559 0.472 0.450 0.500
F 0.326 0.339 0.564 0.526 0.384 0.376 0.647 0.714 0.636 0.588 0.640
Ne 0.443 0.456 0.743 0.686 0.851 0.498 0.491 0.788 0.884 0.810 0.745 0.792
Na 0.097 0.103 0.247 0.178 0.182 0.113 0.106 0.205 0.189 0.270 0.197 0.189
Mg 0.142 0.149 0.313 0.252 0.253 0.175 0.168 0.291 0.273 0.357 0.287 0.281
Al 0.086 0.092 0.227 0.160 0.111 0.102 0.216 0.222 0.263 0.188 0.220
Si 0.144 0.150 0.320 0.237 0.170 0.160 0.290 0.306 0.356 0.267 0.300
P 0.203 0.210 0.416 0.324 0.392 0.231 0.219 0.369 0.399 0.453 0.355 0.385
S 0.174 0.182 0.349 0.305 0.229 0.219 0.410 0.404 0.420 0.362 0.381
Cl 0.254 0.262 0.469 0.400 0.305 0.295 0.491 0.506 0.533 0.453 0.477
Ar 0.334 0.343 0.592 0.506 0.591 0.382 0.373 0.577 0.619 0.652 0.557 0.579
∆(%) 43 41 13.8 8.5 41 42 3.7 5.7 14.4 7.4

a The last row shows the mean absolute error in percentage with respect to exact-exchange and experimental results for exchange
potentials and combined exchange and correlation potential, respectively. b From the work of Engel and Vosko.45 c From the work of Grabo
and Gross.44 d Experimental results taken from Ratzig and Smirnov.46

Table 2. Electron Affinities Calculated from the Highest
Occupied Kohn-Sham Orbital of the Anion (in au)a

atom LB94 KLI-CSb BJBR-PW RPPBR-PW expt.c

Li 0.020 0.024 0.036 0.023
B 0.016 0.033 0.010
C 0.049 0.083 0.032 0.046
O 0.077 0.110 0.054
F 0.128 0.208 0.110 0.125
Na 0.023 0.022 0.012 0.036 0.020
Al 0.018 0.024 0.016
Si 0.050 0.065 0.019 0.039 0.051
P 0.061 0.048 0.026 0.027
S 0.098 0.106 0.069 0.076
Cl 0.140 0.174 0.118 0.127 0.133
∆(%) 29 66 38d 28d

a The last row shows the mean absolute error in percentage.
b From the work of Grabo and Gross.44 c Experimental results
taken from Ratzig and Smirnov.46 d Mean error calculated for
bound solutions only.

Table 3. Ionization Potentials for Molecules Calculated
from the Highest Occupied Kohn-Sham Orbital (in eV)a

molecule LDA PBE LB94 BJBR-PW RPPBR-PW expt.b

CS2 6.93 6.81 11.54 13.08 10.76 10.07
H2S 6.4 6.3 11.33 12.51 11.05 10.46
C2 H4 6.92 6.74 11.85 12.71 10.96 10.51
PH3 6.69 6.64 11.65 12.88 11.62 10.59
NH3 6.28 6.19 11.55 12.58 11.3 10.8
Cl2 7.47 7.36 12.3 14.03 11.86 11.48
C2 H6 8.13 8.15 12.94 15.04 13.33 12
SiH4 8.53 8.53 13.44 15.44 14.04 12.3
SO2 8.3 8.09 14.06 15.2 13.29 12.35
H2O 7.38 7.23 13.2 14.08 12.66 12.62
HCl 8.14 8.04 13.29 14.81 12.83 12.74
N2O 8.6 8.35 14.48 15.4 13.37 12.89
CH4 9.46 9.45 14.29 16.69 14.65 13.6
CO2 9.31 9.05 15.32 16.37 14.2 13.78
CO 9.16 9.09 14.49 16.46 14.47 14.01
H2 10.28 10.4 15.27 17.92 17.54 15.43
N2 10.39 10.24 16.94 18.18 16.09 15.58
F2 9.79 9.54 17.03 17.56 16.18 15.7
HF 9.85 9.65 16.44 17.3 15.69 16.03
∆(%) 35 36 8.0 19 5.7

a The last row shows the mean absolute error in percentage.
b Experimental results taken from Grüning et al.7
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listed in Table 3. Interestingly, RPPBR-PW is significantly
more accurate than BJBR-PW and deviates less than 6%
from the experimental values. LB94 performs also well with
a mean absolute error of 8%. In contrast, the LDA and PBE
fail in a similar fashion as in the atomic cases considered in
the previous section.

For static (isotropic) dipole polarizabilities (see Table 4),
the situation is different in the sense that the LDA and PBE
perform rather well, which is surprising in view of the fact
that the polarization is largely a nonlocal and collective effect.
It is noteworthy, however, that the present test set does not
include problematic elongated molecules or chains (see next
section), for which going beyond LDA (and GGA) is
essential.6-13 For the present cases, BJBR-PW works
remarkably well with a mean error of only 2%, whereas
RPPBR-PW and LB94 deviate almost 10% from the experi-
ments. Nevertheless, no dramatic failures are obtained by
using any of the tested approximations.

4.3. Hydrogen Chains. In Table 5, we show the polar-
izabilities calculated for hydrogen chains from H2 up to
H20. As the reference results, we use available data from
CCSD(T) (coupled-cluster with single and double and

perturbative triple excitations) and MP4 (fourth-order
Møller-Plesset perturbation theory).11 This well-studied
system has proved to be a remarkable challenge for
DFT.6,11-13,22 For example, LDA severely overestimates
the polarizability, as demonstrated also by our results in
Table 5. The error of PBE is slightly smaller. The failure
of LDA and PBE to capture the electric response is
believed to be due to the inherent self-interaction
error.11,48,49 We find that the mean error of LB94 is almost
the same as that of LDA, whereas for BJBR-PW it is
smaller. RPPBR-PW has the best performance of all of
the tested potentials when compared to MP4, although the
mean error is still quite large (27.7%). Possible sources
of error in RPPBR-PW (and BJBR-PW) results are the
ultranonlocal effects in long chains, which might be
beyond reach of any semilocal functionals without ad hoc
modifications, and the use of LDA for the correlation part.
This last point seems to be confirmed by the results
obtained without adding a correlation part to the exchange
potentials: when comparing the polarizabilities obtained
from the exchange-only potentials against exact-exchange
OEP results,6 all of the average errors are reduced, while
the overall trend remains the same.

5. Summary and Outlook
In summary, we have tested recently constructed meta-
generalized-gradient (meta-GGA) functionals for the ex-
change potential, in particular, the potential of Räsänen,
Pittalis, and Proetto (RPP) and that of Becke and Johnson
(BJ), when complemented by the Becke-Roussel (BR)
approximation to the Slater potential (denoted in total as
RPPBR and BJBR, respectively) and by the correlation in
the LDA level. These approximations were compared to the
van Leeuwen and Baerends potential (LB94), a GGA that
shares some properties with these new meta-GGAs, as well
as to standard LDA and GGA functionals. As the reference
data, we used experimental results whenever available,
numerically exact data, and, in the case of comparing the
exchange-only results, the exact-exchange results obtained
from the optimized-effective-potential method.

Overall, the RPPBR potential fared best in the present
test suite consisting of ionization potentials and electronic
affinities of atoms, ionization potentials and dipole po-
larizabilities of small molecules, and longitudinal polar-

Table 5. Longitudinal Polarizabilities of Hydrogen Chains (in au)a

chain xLDA xPBE BJBR RPPBR OEPb LDA PBE LB94 BJBR-PW RPPBR-PW CCSD(T)c MP4c

H2 13.1 12.5 12.4 11.2 12.4 12.0 11.2 11.8 10.8
H4 39.6 37.2 36.3 33.3 32.2 37.7 36.1 35.5 34.9 32.4 29 29.5
H6 76.4 70.7 68.6 63.6 65.6 72.9 69.4 70.5 65.8 61.6 50.9 51.9
H8 120.6 110.2 106.0 99.0 84.2 115.2 108.8 112.9 101.6 95.8 74.4 76.2
H10 169.9 153.2 146.1 137.1 162.2 152.1 160.5 140.8 132.7
H12 222.4 199.2 188.4 177.2 138.1 212.2 197.8 211.6 182.1 171.1 124 127.3
H14 277.0 246.1 231.9 218.0 264.0 245.2 264.3 224.1 210.6 155
H16 333.0 294.1 277.5 259.5 317.2 293.4 318.6 267.3 250.5
H18 389.8 342.5 323.0 301.5 371.1 342.2 373.2 309.8 290.8 205.39
H20 447.3 391.4 367.2 343.6 425.4 391.4 425.0 353.9 331.3
∆(%) 40.6 28.9 24.0 15.4 56.2 46.5 53.8 36.2 27.7

a The last row shows the mean absolute error in percentage, calculated against OEP and MP4 (when available) for exchange only
potentials and combined exchange and correlation potentials, respectively. b Results from the work of Kümmel et al.6 c The MP4 and
CCSD(T) results have been taken from the work of Ruzsinszky et al.11 apart from the MP4 result for H18 taken from Champagne et al.47

Table 4. Static (Isotropic) Dipole Polarizabilities for
Molecules (in au)a

molecule LDA PBE LB94 BJBR-PW RPPBR-PW expt.b

CS2 56.50 56.45 51.72 55.44 55.29 55.28
H2S 26.21 25.91 21.95 24.24 22.51 24.71
C2H4 28.71 28.52 24.93 27.71 25.21 27.7
PH3 32.29 31.72 27.39 29.99 27.47 30.93
NH3 15.58 15.45 12.41 13.83 12.32 14.56
Cl2 32.33 32.21 30.92 31.41 32.39 30.35
C2H6 30.17 29.73 27.41 28.23 26.52 29.61
SiH4 34.03 33.07 30.17 31.11 28.47 31.9
SO2 27.44 27.53 22.97 25.78 23.68 25.61
H2O 10.74 10.73 8.28 9.49 8.53 9.64
HCl 18.61 18.47 15.85 17.18 16.21 17.39
N2O 20.7 20.74 17.42 19.46 18.47 19.7
CH4 17.77 17.45 15.87 16.46 15.41 17.27
CO2 18.21 18.24 15.66 17.39 16.16 17.51
CO 13.91 13.87 11.6 13.13 12.29 13.08
H2 5.87 5.64 5.02 5.27 4.56 5.43
N2 12.64 12.63 10.79 11.9 11.4 11.74
F2 8.86 8.97 7.23 8.31 7.73 8.38
HF 6.23 6.27 4.8 5.52 4.89 5.6
∆(%) 6.1 5.3 9.8 2.0 8.9

a The last row shows the mean absolute error in percentage.
b Experimental results taken from Grüning et al.7
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izabilities of hydrogen chains. The LB94 potential per-
formed in an appealing fashion in several instances. The
BJBR potential gave particularly good results for the
calculation of static polarizabilities of small molecules.
Desired future developments would include the develop-
ment of correlation potentials compatible with the RPRBR
potential.

In conclusion, the RPPBR potential combines a proper
theoretical foundation with very good results for a series of
properties of atoms and molecules. Moreover, it is very light
from the computational point of view, thus allowing an
efficient calculation of large systems. Therefore, we believe
that the RPPBR potential is an important step in the quest
for a simple and all-around semilocal potential for applica-
tions of density-functional theory.
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(6) Kümmel, S.; Kronik, L.; Perdew, J. P. Phys. ReV. Lett. 2004,
93, 213002.
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Abstract: Following the increasing interest in the higher-order (functional) derivatives of
conceptual density functional theory, we developed and implemented a method for calculating
second-order functional derivatives with respect to the external potential. Our method is
theoretically exact but involves two numerical approximations: the functional derivatives are
expanded in a basis set, and the values of the corresponding expansion coefficients are
determined by probing the molecular environment by a finite set of external potential
perturbations. Exact solutions are obtained only in the limit of a complete basis set and an
infinite number of distinct perturbations. We use this method to compute the atom-condensed
linear response kernel for a series of six molecules and show that the results are comparable
to the ones obtained by a previously proposed, approximate approach from second-order
perturbation theory. The numerical error of the current implementation is about 0.01 au. Because
the present method gives exact or quasi-exact solutions, it can be used as a benchmark against
which approximate approaches are assessed.

1. Introduction

The interpretation of chemical reactivity on the basis of
response functions is the central concern of conceptual or
chemical density functional theory (DFT).1-5 Concepts of
chemical relevance are defined as derivatives of the electronic
energy E with respect to the number of electrons N or as
functional derivatives of E with respect to the external
potential V(r), which is the electron-nuclear potential for
isolated systems (in au):

The sum runs over all the atomic nuclei with nuclear charges
ZR and positions RR. Fundamental chemical reactivity

indicators include the electronic chemical potential µ,6,7 the
chemical hardness η,8,9 the electron density F(r), and the
Fukui function f(r),10,11 which have been defined as

These and other derived quantities characterize the chemical
behavior of individual molecules by assessing their response
to model perturbations without the explicit description of
the partner reagents. Such chemical reactivity indicators have
been applied in many studies in order to interpret both
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† Vrije Universiteit Brussel.
‡ Research Foundation-Flanders.
§ McMaster University.

V(r) ) -∑
R

ZR

|r - RR|
(1)

µ ) (∂E
∂N)V(r)

(2)

η ) (∂
2E

∂N2)
V(r)

(3)

F(r) ) ( δE
δV(r))N

and (4)

f(r) ) ( ∂

∂N( δE
δV(r))N)V(r)
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theoretical and experimental data on various types of
chemical reactions.3

The mixed derivative of eq 5, the Fukui function, can be
written in either of two ways:

The “(” sign indicates that the derivatives with respect to
the electron number should be evaluated from the left- or
right-hand side. As shown by Perdew et al.7 in a zero-
temperature grand canonical ensemble framework, these
derivatives of the electronic energy E and electron density
F(r) are discontinuous at integer electron number (which is
always the case for isolated systems). The most common
approach for evaluating the Fukui functions is based on a
finite difference approximation of eq 6:

where the Fukui functions of a system consisting of N0

electrons are obtained in terms of the electron densities of
the N0, (N0 - 1), and (N0 + 1) electron systems. Although
relations (eqs 8 and 9) are exact for solutions to the
Schrödinger equation, they are inexact for most approximate
computational methods.11-13 This observation led the present
authors to explore a different route, namely the calculation
of the functional derivative of the chemical potential with
respect to the external potential (eq 7).14,15 A general
numerical procedure to compute the first-order functional
derivative of any quantity with respect to the external
potential was developed for this purpose; the basic idea is
to use the computed responses of the quantity under
consideration upon external potential perturbations to cal-
culate the expansion coefficients for the desired functional
derivative. This methodology has been extensively analyzed
and applied in a series of papers. In the first paper,14 the
theoretical background to this methodology was presented,
focusing on the accurate calculation of the Fukui function
for the beryllium atom and formaldehyde molecule. A second
contribution15 dealt with the calculation of atom-condensed
Fukui functions for a range of molecules, including mono-
substituted benzenes. A detailed study of the locally resolved
Fukui function and dual descriptor was provided in a third
contribution.16 The most recent paper in this series17

employed the approach in the reactivity description of
alkaline earth metal oxide clusters, thus avoiding periodic
boundary condition calculations for this kind of system, and
introduced the concept of the molecular orbital-averaged
Fukui function, which takes the reactivity information of
various molecular orbitals (MOs) into account.

The purpose of this article is the calculation of second-
order functional derivatives with respect to the external
potential. Building upon our previous work, we will present
the necessary theory for and practical implementation of the

methodology. The numerical results in this contribution
concentrate on the linear response or polarizability kernel
�(r,r′),18,19 defined as

and, more specifically, on the direct calculation of the atom-
condensed linear response. The computation of other quanti-
ties is, however, within our reach. One could think, for
example, of the Fukui kernels f ( (r,r′):19-21

which take polarization effects on the Fukui functions into
account, as the linear response kernel does for the electron
density.

Several authors have been showing an increased interest
in the higher-order (functional) derivatives of conceptual
DFT.22-26 In the case of the linear response kernel, this has
led to a number of papers devoted to the formulation of its
theoretical properties and formal solutions. The fundamental
role of the linear response kernel is highlighted by the
Berkowitz-Parr equation:18

which relates the linear response kernel to the softness kernel
s(r,r′), the local softness s(r), and the global softness S. The
softness kernel, which is defined as

is, in turn, the inverse of the hardness kernel η(r,r′):18,27

which is ultimately connected to the local hardness η(r).28-32

Senet19 derived exact functional relations between the linear
and nonlinear response functions and the ground-state
electron density in terms of the universal Hohenberg-Kohn
functional F[F]. Theoretical expressions for and the mutual
relations between the linear and nonlinear responses and the
softness and hardness kernels have been elaborated within a
Kohn-Sham (KS) formalism.33-35 The linear response
kernel can also be obtained as the zero-frequency limit of
the dynamic linear response kernel in time-dependent DFT.1

A recent paper by Liu et al.36 summarizes the most important
mathematical properties of �(r,r′).

There are very few numerical results on the linear respone
function in the context of conceptual DFT, and they are
typically obtained in approximate manners, without explicitly
evaluating the second-order functional derivative. We should
mention the studies of Baekelandt et al.37 and Wang et al.,38

in which atom-condensed linear response matrices are
calculated within the context of the electronegativity equal-
ization method (EEM).39 Numerical data are also given in
some papers by Morita and Kato,40-42 where this quantity
is obtained by solving the coupled-perturbed Hartree-Fock

f ((r) ) (∂F(r)
∂N )ν(r)

(
or (6)

f ((r) ) ( δµ(

δV(r))N
(7)

fN0

-(r) ) FN0
(r) - FN0-1(r) and (8)

fN0

+(r) ) FN0+1(r) - FN0
(r) (9)

�(r, r′) ) ( δ2E
δV(r)δV(r′))N

) ( δF(r)
δV(r′))N

(10)

f((r, r′) ) ( δ2µ(

δV(r)δV(r′))N
) (δf((r)

δV(r′))N
(11)

�(r, r′) ) -s(r, r′) + s(r)s(r′)
S

(12)

s(r, r′) ) - δF(r)
δu(r′) (13)

∫ s(r, r′)η(r′, r′′)dr′ ) δ(r - r′′) (14)
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(HF) or KS equations. Their work is based on the ideas of
Stone and Alderton,43 who analyzed dipole and multipole
polarizabilities and has been extended by Yang et al.44 The
explicit calculation of the response ∆F(r) of the electron
density upon a point charge perturbation in the external
potential has been analyzed for various atoms.45 Related
work has also been done by Cedillo et al.46 Cioslowski and
Martinov have calculated approximate atomic softness
matrices, which can be interpreted as the negatives of
approximate linear response matrices.47 Some of the present
authors calculated the atom-condensed linear response kernel
within the context of second-order perturbation theory and
proposed a sound basis for its chemical interpretation:48,49

They have shown that the linear response kernel measures
the extent of electron delocalization, providing a way to
differentiate between inductive, resonance, and hypercon-
jugation effects.

This paper is organized as follows: the theoretical back-
ground for the methodology to evaluate second-order func-
tional derivatives will be given in Section 2; Section 3 is
concerned with a detailed description of the computational
algorithm that implements the presented theory; and numer-
ical data are given in Section 4, where some relevant test
systems are analyzed in order to illustrate and validate the
proposed methodology. Some final theoretical considerations
are made in the Appendix.

2. Theoretical Background

One could seek to formulate analytic expressions for second-
order functional derivatives of a given property with respect
to the external potential corresponding to a specific theoreti-
cal level (e.g., HF or KS DFT with a certain exchange-
correlation functional). We will, however, develop a numer-
ical procedure that is able to evaluate these functional
derivatives of any property P independently from the
theoretical level. The starting point for our approach is
provided by a functional Taylor series4 of P for which the
initial (or unperturbed) external potential V(r) is perturbed
by w(r). This yields the next expression, where third- and
higher-order terms in the norm of the perturbation are
neglected:

The functional derivatives, (δP/δV(r))N and (δ2P/δV(r)-
δV(r′))N, are evaluated at the unperturbed external potential
V(r). So long as the perturbation w(r) is small enough, this
second-order truncation does not introduce a significant error.
Construction of an analogous equation for an external
potential perturbation of -w(r) and addition to eq 15 gives

We will now expand the second-order functional derivative
in a basis set {�k(r)}k)1

K as follows

This basis set expansion is mathematically rigorous if the
quantity P is the electronic energy or one of its first- or
higher-order (functional) derivatives with respect to the
electron number or external potential.14,50 If the set {�k(r)}k)1

∞

spans the function space of electron densities, eq 17
converges toward the exact functional derivative as Kf ∞.14

To determine the expansion coefficients, qkl, insert eq 17 into
eq 16 and consider a set of external potential perturbations
{wj(r)}j)1

J , J g K, instead of the single perturbation w(r) in
eq 16. A set of simultaneous linear equations results, which
can be solved for the expansion coefficients, and thus enables
the calculation of the desired second-order functional deriva-
tive. This set of equations can be written as

The J-dimensional column matrix D consists of the responses
of quantity P upon the various external potential perturbations:

A vital requirement for our methodology is that these
responses can be obtained, which is rarely an obstacle since
most quantum chemical program packages can provide the
necessary information. The J × K2 matrix B is comprised
of the integrals over the various basis functions and the
external potential perturbations:

These integrals can be evaluated analytically with the chosen
{�k(r)}k)1

K and {wj(r)}j)1
J (vide infra). The K2-dimensional

column matrix Q, finally, contains the expansion coefficients
for the second-order functional derivative:

The set of eq 18 can be solved through a linear least-squares
fitting procedure, as the number of external potential
perturbations (J) will exceed the number of expansion
coefficients to be determined (K2). Indeed, a large value for
J is required to ensure that enough information about the
molecule’s responses is collected to calculate a reliable
second-order functional derivative.

So far, the general theoretical framework has been
outlined. As might be expected, the numerical results are
also dependent upon some practical considerations; particu-
larly upon the manner in which the external potential
perturbations are modeled and upon the basis set used for
the expansion of the second-order functional derivative.
These specifications form the subject of the following section.

3. Computational Method

In order to ensure the reproducibility of our results, the
practical side of the computational algorithm will be detailed
here.

P[V(r) + w(r)] ) P[V(r)] + ∫ ( δP
δV(r))N

w(r)dr +

1
2 A ( δ2P

δV(r)δV(r′))N
w(r)w(r′)drdr′+O(|w(r)|3) (15)

P[V(r) + w(r)] - 2P[V(r)] + P[V(r) - w(r)] )

A ( δ2P
δV(r)δV(r′))N

w(r)w(r′)drdr′ (16)

( δ2P
δV(r)δV(r′))N

) ∑
k)1

K

∑
l)1

K

qkl�k(r)�l(r′) (17)

D ) BQ (18)

Dj ) P[V(r) + wj(r)] - 2P[V(r)] + P[V(r) - wj(r)],

with j ) 1, ..., J (19)

Bj,(k-1)K+l ) ∫ �k(r)wj(r)dr∫ �l(r′)wj(r′)dr′,
with j ) 1, ...,J and k, l ) 1, ..., K (20)

Q(k-1)K+l ) qkl, with k, l ) 1, ..., K (21)
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3.1. External Potential Perturbations. One of the key
elements is the type of external potential perturbations that
are considered. We chose to perturb the external potential
by point charges so that the {wj(r)}j)1

J is given by

with qj the charge values and Rj the positions of the point
charges. This type of perturbation has already proven its
usefulness for calculating first-order functional derivatives.
Moreover, the utility of point-charge perturbations for
elucidating a molecule’s reactivity is becoming increasingly
apparent due to recent theoretical and computational
developments.46,51-53

Two molecular regions are defined; perturbations are
placed on a cubic grid within these regions to ensure
complete and uniform sampling. We consider three scaled
van der Waals surfaces (with scaling factors: Rmin < Rmiddle

< Rmax) to designate an inner molecular region, extending
between the van der Waals surfaces scaled by the factors
Rmin and Rmiddle and an outer region, determined analogously
by Rmiddle and Rmax. The inner region will typically cover
the space lying within the molecular van der Waals surface,
excluding the nuclear zone if one is not interested in its
accurate description, which is usually the case when atom-
condensed properties are studied. The corresponding grid
should be relatively fine so that the desired second-order
functional derivative is accurately represented in this mo-
lecular region, where it fluctuates significantly because of
chemical bonding and proximity to the atomic nuclei. Given
the considerable electron density within this region, the
charge value qj should not be too high for the second-order
truncation of eq 15 to be applicable. The point charges may
assume higher values in the outer region; the corresponding
grid can also be constructed more coarsely as the fluctuations
in the functional derivatives will be less pronounced here. It
is important to extend this outer grid rather far (up to several
van der Waals radii) in order to capture all the information
that is relevant to describe a system’s chemical reactivity.

Once the external potential perturbations are defined, the
responses of quantity P (as given by eq 19) should be
determined. This is readily done by performing single point
calculations of the molecule under study in the presence of
one of the point charge perturbations wj and by repeating
this for all the other perturbations. For the properties we are
interested in (the electronic energy, the chemical potential,
etc.), any standard ab initio program can provide the
necessary data.

3.2. Basis Set and Atom Condensation. The choice of
a basis set for the expansion of the second-order functional
derivative (eq 17) is another vital element. We have used s-
and p-type Gaussian basis functions, centered on the atomic
nuclei. Higher angular momentum functions could be
included but are expected to induce only minor variations.14,15

The exponents can be chosen from standard atomic basis
sets, uncontracted into primitive Gaussians, but with a
doubled value. This is a consequence of the fact that the
second-order functional derivatives of conceptual DFT are

related to the first-order functional derivative of the electron
density F(r) (see, e.g., eq 10) and that F(r) decays twice as
fast as the associated wave function. The exponents of
auxiliary basis sets,54,55 which are used for the acceleration
of the evaluation of the Coulomb integrals in DFT calcula-
tions, can also be used; these do not require doubling.

Computation of the atom-condensed56 variants greatly
simplifies the situation. The atom-condensed indices are
normally defined as

where P(2)(r,r′) is used as a shorthand notation for the
second-order functional derivative of property P and VA and
VB denote the volumes of atoms A and B, respectively.
Despite that, the basis set expansion of eq 17 provides an
alternative approach:

Instead of integrating the kernel P(2)(r,r′) over the atomic
volumes VA and VB, the contributions of atom A to the
r-dependent part and of atom B to the r′-dependent part of
the functional derivative are integrated over the entire space.
These contributions originate from the terms in the basis set
expansion for which the function �k(r) is centered on atom
A and �l(r′) on atom B. It has been shown that the use of
one sharp s-type Gaussian function (mimicking a Dirac
δ-function) per atomic center yields reliable results for the
condensed first-order functional derivatives.15 The validity
of this kind of basis set in the evaluation of condensed
second-order indices will be illustrated in Section 4. The
requirement of sharp functions is essential for this condensa-
tion scheme. It is indeed important that the atomic contribu-
tions do not overlap because the integrations over the entire
space in eq 24 would lose their relevance. It should be
stressed that the use of such a simplified basis set leads to a
vast reduction in the number of expansion coefficients (K2)
to be determined and hence in the computational effort.

3.3. Normalization Constraint. As the normalization of
the functional derivatives is often a priori known, the user
has the option to impose it as a constraint. Let us consider
the case of the linear response kernel �(r,r′) as an example.
We know that this quantity is normalized to 0 and,
furthermore, that the integration over one of the position
variables should give this value as well:18,36

Combination of this expression with the basis set expansion
of eq 17 yields the following normalization equation:

where Il denotes the integral over the l-th basis function. An
infinite number of such equations, corresponding to any value
for the position variable r, can be constructed and added to

wj(r) )
-qj

|r - Rj|
(22)

PAB
(2) ) ∫VA

∫VB
P(2)(r, r′)drdr′ (23)

PAB
(2) ) ∑

k)1

k∈A

K

∑
l)1

l∈B

K

qkl ∫ �k(r)dr∫ �l(r′)dr′ (24)

∫ �(r, r′)dr′ ) 0 (25)

∑
k)1

K

∑
l)1

K

qkl�k(r)Il ) 0 (26)
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the set of eq 18 as a constraint. In practice, a limited number
of well-chosen ones suffices to obtain normalization. Nu-
merical illustrations will be given in the next section. The
use of normalization constraints is even superfluous provided
that sufficient external potential perturbations are taken into
account, and this is in all molecular regions, including the
nuclear zone.

3.4. Symmetry. Given the extent of the computational
cost of our methodology (a single point calculation for every
positive and negative external potential perturbation), the
implementation of symmetry properties is paramount for the
reduction of this effort. Two levels of symmetry can be
distinguished: the symmetry properties of the second-order
functional derivative and the point group symmetry of the
system under study. The first type is a consequence of the
arbitrary order in which the functional derivatives with
respect to V(r) and V(r′) are evaluated, implying that

The immediate result is that the number of expansion
coefficients in eq 17 can be reduced from K2 to K(K + 1)/2
as qkl should equal qlk, which simultaneously leads to a
decrease in the required number of external potential
perturbations. Inclusion of molecular symmetry properties
further diminishes this number. As perturbations that are
linked through symmetry operations belonging to the mo-
lecular point group give rise to identical responses, it is
sufficient to sample a restricted, symmetry unique portion
of space and to spatially propagate the obtained responses
based on the molecular symmetry elements.

3.5. Computational Procedures. A final word should be
said about the computational procedures we have used.
Construction of matrix D in eq 18 requires the calculation
of quantity P in the presence and the absence of the various
external potential perturbations. The Gaussian 03 program
package57 will be used to calculate the electronic energy
responses, as we will be focusing on the linear response
kernel in the next section; obviously, other quantities can
be obtained in a similar way. Matrix B contains integrals
over a basis function and an external potential perturbation.
The use of Gaussian basis functions and point charge
perturbations enables an analytic evaluation, which es-
sentially needs the computation of the incomplete γ function.
This is done by a Fortran 90 numerical recipes routine.58

The least-squares fitting procedure chosen to solve the set
of linear eq 18 is taken from LAPACK59 and uses a singular
value decomposition approach.

4. Numerical Results

In this section, the atom-condensed linear response kernel,
defined by eqs 10 and 24, will be calculated for a series of
simple test systems. Not only will we show the numerical
data that can be obtained, but we will also explain how the
various parameters that emerged from our implementation
should be chosen. The results will be compared with values
obtained in another manner, which was previously studied
by some of the present authors.48,49 They used second-order
perturbation theory to derive the next, approximate expres-

sion, valid for closed-shell systems described by a single
Slater determinant:26,35,60

The sum over i runs over all the occupied molecular orbitals
φi(r) (with associated orbital energies εi), while the index a
spans the unoccupied ones. It is important to note that a
frozen-orbital approximation was made in its derivation and
that energy differences between excited and ground states
were replaced by orbital energy differences. These ap-
proximations are, however, exactly applicable to the KS
noninteracting reference system, so that eq 28 can be seen
as the exact functional derivative of the electron density with
respect to the KS potential. There is a relation between the
interacting linear response kernel, �(r,r′), and the noninter-
acting one, �s(r,r′)35,61

which shows that formula (eq 28) is a zeroth-order ap-
proximation to the linear response kernel for the interacting
system. Eq 28 can be condensed in the sense of eq 23, which
was done using Becke’s multicenter numerical integration
procedure.62-64 In the absence of reference data for the linear
response kernel, we will make use of this approximate
approach to assess the validity of our implementation.

We have chosen to study a series of six moleculess
formaldehyde, water, ammonia, carbon monoxide, hydrogen
cyanide, and nitrous oxidesthat present interesting chemical
properties and are computationally convenient because of
their small size and high symmetry. Their geometries have
been optimized on the B3LYP/6-311++G** level of
theory,65-68 whereas the single point calculations for eq 19
and the input for eq 28 have been done on the PBE/6-31+G*
level.69,70 As introduced in the previous section, the user
should specify a number of parameters prior to the actual
evaluation of the second-order functional derivatives. It is
advisible that the specific choices are extensively tested
beforehand with respect to convergence (e.g., the number
of point charges) and numerical stability of the results. We
will provide an example of this at the end of this section,
where the numerical error is estimated through variation of
the various parameter values. It is, however, interesting to
start with a discussion of the optimal parameter values and
the corresponding results.

The main group of parameters to be chosen is associated
with the construction of the set of external potential perturba-
tions. As suggested in Section 3.1, Rmiddle will be assigned a
value of 1.0 van der Waals radii so that the inner sampling
region spans the molecular van der Waals volume. The
nuclear region will, however, be excluded by choosing an
Rmin value of 0.3 van der Waals radii. This can be done
without harm because chemical variations take place in the
valence region and because we are interested in the calcula-
tion of an atom-condensed quantity, without aiming for a

P(2)(r, r′) ) P(2)(r′, r) (27)

�s(r, r′) ) 4 ∑
i)1

N0/2

∑
a)(N0/2)+1

∞ �i*(r)�a(r)�a*(r′)�i(r′)
εi - εa

(28)

�(r, r′) ) �s(r, r′) +

A �s(r, x)( 1
|x - x′| +

δ2Exc

δF(x′)δF(x))�(x′, r′)dxdx′ (29)
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locally resolved description. Furthermore, it has been shown
in the context of the first-order functional derivatives that
an accurate representation of the nuclear cusps requires many
thousands of additional point charges.14 The Rmax value will
be set equal to 4.0 van der Waals radii; a further extension
of the external potential sampling region does not change
the results. Point charges in the inner region will have values
of (0.02 e (elementary charge) and the spacing of the
corresponding cubic grid will be 0.12 Å. Larger charge values
of (0.10 e can be chosen for the outer region; the
perturbations are also placed farther apart, with an associated
grid spacing of 0.40 Å.

We have observed that it is often advantageous to impose
the normalization constraints (eq 26) for the study of atom-
condensed quantities. The implementation of this equation
occurs in quite a similar way as the construction of the
external potential perturbations: it will be evaluated for a
number of positions r lying on a cubic grid between two
scaled van der Waals surfaces. The points where the
normalization constraint should be evaluated are, however,
influenced by the basis set used for the expansion of the
functional derivative. We will use the simplified basis set of
one sharp s-type Gaussian function per atom with exponent
values of 10.0 au, ensuring that overlap between two or more
atoms is negligible. As a consequence, the normalization
constraints should be evaluated within a zone that is close
to the atomic nuclei, on which the various basis functions
are centered. The sharp basis functions �k(r) of eq 26 will
indeed assume values close to 0 if r is chosen too far away

from any of the atomic nuclei, yielding the trivial expression
“0 ) 0”. The normalization equations will be evaluated in
the volume contained within the van der Waals surfaces
scaled by the factors 0.1 and 0.3. A grid spacing of 0.2 Å
gives satisfactory results. It is interesting to note that the
normalization equations are evaluated in the region of space
where no external potential perturbations are placed. Infor-
mation about this zone is thereby indirectly taken into
account, while avoiding an extensive sampling to represent
the nuclear cusps.

The above-mentioned parameters typically give rise to a
number of external potential perturbations (J) of the order
of 50 000 and around 200 normalization equations. Such an
extensive sampling by external potential perturbations re-
quires a considerable computational effort but should be close
to the convergence limit, except for the nuclear zone, which
is not explicitly dealt with here. The computational cost will
be minimized by inclusion of the molecular symmetry
properties, which gives a reduction in the number of required
single point calculations by a factor 4 for formaldehyde (C2V

point group) and 6 for ammonia (C3V point group), for
example. The symmetry of the linear response kernel (eq
27) will also be taken into account.

Table 1 gives the numerical results obtained by our
approach to calculate second-order functional derivatives and
by the perturbation theoretical methodology based on eq 28.
It is encouraging to see how well the data obtained by both
methods correlate; the linear regression correlation coefficient
varies between 0.92 and 1.00 for the set of chosen molecules.

Table 1. Linear Response Matrix Elements �AB (in au) between Atoms A and Ba

molecule �AB (a) �AB (b) correlation

CH2O

H1 C O H2 H1 C O H2

H1 -1.21 H1 -1.21
C 1.19 -4.82 C 0.68 -4.35 0.96 (0.99, -0.01)
O 0.42 2.45 -3.28 O 0.34 2.99 -3.67
H2 -0.40 1.19 0.42 -1.21 H2 0.19 0.68 0.34 -1.21

H2O

O H1 H2 O H1 H2

O -3.77 O -1.76 0.96 (1.98, 0.05)
H1 1.88 -1.39 H1 0.88 -0.93
H2 1.88 -0.49 -1.39 H2 0.88 0.05 -0.93

NH3

N H1 H2 H3 N H1 H2 H3

N -5.65 N -2.73
H1 1.88 -1.37 H1 0.91 -1.00 0.97 (1.92, 0.06)
H2 1.88 -0.25 -1.37 H2 0.91 0.05 -1.00
H3 1.88 -0.25 -0.25 -1.37 H3 0.91 0.05 0.05 -1.00

CO
C O C O

C -4.33 C -3.78 1.00 (1.15, 0.00)
O 4.33 -4.33 O 3.78 -3.78

HCN

H C N H C N
H -0.85 H -0.96 1.00 (0.92, 0.00)
C 0.76 -5.24 C 0.60 -5.49
N 0.09 4.49 -4.58 N 0.36 4.89 -5.25

NNO

N1 N2 O N1 N2 O
N1 -3.76 N1 -5.79 0.92 (0.74, -0.04)
N2 2.56 -4.26 N2 2.84 -4.10
O 1.20 1.70 -2.90 O 2.95 1.25 -4.21

a Calculated with: (a) our proposed methodology to compute second-order functional derivatives and (b) the approach based on eq 28.
Linear regressions between both data sets for each molecule give rise to the correlation coefficients (R2) shown in the last column; the
values in brackets indicate the corresponding slopes and intercepts.
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Some interesting differences are, nonetheless, visible. While
the intercepts of the regression lines consistently stay close
to 0, the corresponding slopes assume values from 0.74 to
1.98. Therefore, although the intramolecular trends are
similar in either of the approaches, the intermolecular ones
may change. This leads, for example, to a higher linear
response value for �OO in water than in formaldehyde with
the present methodology, whereas the inverse trend is
predicted through application of eq 28. Another point is that
the present methodology finds slightly negative values for
the off-diagonal H-H elements in formaldehyde, water, and
ammonia. This can be interpreted as if an external potential
change induced by a positive charge distribution in the atomic
volume of one of the hydrogen atoms leads to an electron
density increase in the neighboring hydrogens. Although this
cannot be excluded because of their spatial proximity, the
same observation cannot be made from eq 28, where near-
zero values are obtained. A final dissimilarity is seen for
nitrous oxide, where the central atom is predicted to be the
most polarizable atom by our method, while it seems to be
the least polarizable one with the other approach.

It should be emphasized that these differences do not come
as a surprise for some reasons: First of all, the atomic
condensation procedures used in both approaches are com-
pletely different. Second, application of eq 28 involves the
theoretical approximations that were explained at the begin-
ning of this section.48,49 Finally, while our methodology does
not involve approximations on the theoretical level, there
are numerical approximations. It is, however, true that the
present methodology in principle allows the computation of
exact solutions if the situation of an infinite number of
external potential perturbations and a complete basis set is
approached. We therefore assume that the current methodol-
ogy provides the best representation of chemical reality, even
though further research is certainly needed to confirm this
statement.

It is now appropriate to make two comments on the
chemical interpretation of the linear response kernel. Some
of the present authors have shown that this quantity can be
used as a measure of electron delocalization.48,49 Moreover,
the linear response kernel contains the necessary information
to evaluate a system’s polarizability.60,71 For example, �(r,r′)
can be related to the dipole polarizability tensor Rij,72 where
the indices i and j stand for the Cartesian directions:

Unfortunately, this quantity is not accessible with the
presented results for the atom-condensed linear response
kernel but could straightforwardly be obtained if the locally
resolved kernel was calculated using our methodology. One
should, however, be careful when interpreting the atom-
condensed linear response elements as indicators of the
atomic polarizabilites. A consideration of the diatomic
molecule CO, for example, shows that these elements do
not necessarily equal polarizabilities of atoms in molecules.
Indeed, the symmetry properties of the kernel result in
identical values for the �CC and �OO elements, while the
carbon and oxygen atoms should clearly have a different
polarizability. A second note concerns the use of the linear
response kernel as a tool for the description of intermolecular
trends. The fact that both methodologies of Table 1 give
similar intramolecular trends, but different intermolecular
ones could indicate that the linear response kernel is less
suitable for making intermolecular comparisons. An analo-
gous observation has been made for the local reactivity
descriptors. The Fukui function is an appropriate property
for intramolecular reactivity descriptions, whereas the local
softness is preferred for intermolecular comparisons.3 Future
research should verify whether a similar reasoning, based
on the Berkowitz-Parr relation (eq 12), leads to the
conclusion that the softness kernel s(r,r′) is a better alterna-
tive for the description of intermolecular trends.

As a final item, we will estimate the computational error
associated with the current implementation and parameter
choices. Table 2 gives the root-mean-square errors (RMSE)
in the atom-condensed linear response values for formalde-
hyde induced by variations of the relevant parameters around
the optimal values we have put forward. Variations (a) and
(b) analyze the effect of an enlargement and reduction of
the external potential sampling region. Errors of 0.00021 and
0.00099 au are found when the Rmax values are changed from
4.0 to 5.0 and 3.0 van der Waals radii, respectively, indicating
that our chosen sampling border does not form an obstacle
for the numerical stability of the results. We are thus allowed
to ignore the large sampling region associated with an Rmax

value of 5.0 van der Waals radii, which concomitantly gives
rise to a considerable increase in computational cost (20,250
external potential perturbations instead of 12,998). The
number of perturbations can also be varied by altering the
spacings of the corresponding grids. Reduction of the inner
grid lattice parameter (ainner) from 0.12 to 0.11 Å and of the
outer one (aouter) from 0.40 to 0.35 Å, yielding an increase

Table 2. Variation of the Relevant Parameters Around Their Optimal Values and the Corresponding RMSE Induced in the
Atom-Condensed Linear Response Values for Formaldehydea

parameter optimal value (a) (b) (c) (d) (e) (f) (g) (h)

Rmax (vdW radii) 4.0 5.0 3.0
qinner (e) 0.02 0.04 0.01
qouter (e) 0.10 0.20 0.05
ainner (Å) 0.12 0.11 0.15
aouter (Å) 0.40 0.35 0.50
exponent basis functions (au) 10.0 20.0 5.0

number of perturbations 12 998 20 250 8632 18 172 6964
RMSE 0.00021 0.00099 0.011 0.062 0.0021 0.00019 0.0024 0.036

a The number of external potential perturbations considered (before symmetry propagation) is indicated where relevant.

Rij ) -A rirj′�(r, r′)drdr′ (30)
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in the number of external potential perturbations to 18 172,
leads to a RMSE of 0.011 au. This result indicates that higher
precision values can be obtained by refinement of the grids
on which the point charges are placed, however, at substantial
computational expense. Our proposed values for the lattice
parameters attempt to limit this computational effort and yield
values that are precise up to the second decimal. Variation
(d) provides an example of this, which shows that a RMSE
of 0.062 au is found when the number of perturbations is
reduced by a factor of around 2; this dissuades us from using
coarser grids. The sizes of the point charges exert only a
minor effect on the obtained results. Variations (e) and (f),
respectively doubling and halving their values, give rise to
errors of 0.0021 and 0.00019 au. The last parameter to be
considered is the exponent value of the basis functions. An
increase of this value from 10.0 to 20.0 au only leads to a
small variation in the linear response elements of 0.0024 au.
Reduction of the exponent to 5.0 au, however, gives rise to
a considerable RMSE of 0.036 au. This indicates that such
an exponent value is too low to prevent the basis functions
from spreading over several atoms, which should be avoided.
Overall, the presented optimal values yield numerical stability
at a minimal computational expense. We have shown that
the associated numerical error is of the order of 0.01 au.

5. Conclusion and Prospects

In this paper, the first generally applicable methodology to
calculate second-order functional derivatives of arbitrary
properties with respect to the external potential is proposed.
The central idea is to expand the desired functional derivative
in a basis set and to determine the expansion coefficients by
probing the molecular environment with external potential
perturbations. Although this approach is theoretically rigor-
ous, exact solutions can only be obtained if an infinite basis
set and a number of perturbations are considered.

We applied the methodology to evaluate the atom-
condensed linear response kernel and estimated that the
numerical error of the current implementation is of the order
of 0.01 au. The results for a set of six simple molecules were
compared with values obtained through an approximate
methodology based on second-order perturbation theory.
Both approaches are generally in agreement.

The most important disadvantage of the proposed meth-
odology is its substantial computational cost. For the set of
molecules considered, a number of 50 000 positive and
negative external potential perturbationsseach requiring a
single point calculationswas typically needed to obtain
converged results. Even though this number was reduced by
taking molecular symmetry into account, the vast computa-
tional effort will probably prevent this method from being
the routinely used procedure in the future. Nonetheless, the
fact that this methodology does not involve any theoretical
approximations and that exact or quasi-exact solutions can
be found, if the sets of external potential perturbations and
basis functions are chosen large enough, implies that it can
be used as a benchmark method against which more easily
applicable, approximate methodologies may be assessed.
Another advantage of this algorithm, compared to the more

conventional approach based on eqs 28 and 29, is that the
atom-condensed linear response kernel is accessed directly.

We should, finally, mention that it is possible to enhance
the computational efficiency by adding extra equations to
the set of eq 18, the nature of which depends upon the
property one is interested in. As an illustration, the Appendix
will show how the calculation of the linear response kernel
could be accelerated by taking responses of the electron
density or electrostatic potential into account.
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Appendix

The definition of the linear response kernel (eq 10)
provides a means to accelerate the proposed methodology if
one is specifically interested in the calculation of this
quantity. Not only can the linear response kernel be seen as
the second-order functional derivative of the electronic
energy E with respect to the external potential, but it can
also be considered as the first-order functional derivative of
the electron density F(r). An analogous reasoning as in
Section 2, but this time based on a functional Taylor series
of the electron density evaluated at point x, yields the
following equations for the expansion coefficients qkl

The advantage is that a series of equations of this type,
corresponding to electron density responses evaluated at
various points (x ) x1, x ) x2, ...) can be constructed for
every external potential perturbation j. The fact that just two
single point calculations (one for wj(r) and one for - wj(r))
can give rise to a number of equations to be considered in
the least-squares fitting procedure implies a significant
computational benefit.

Another possibility lies in the evaluation of electrostatic
potential73 responses. The electrostatic potential is defined
as

A functional Taylor series of Φ(x) for which the external
potential is perturbed by w(r) can be written as follows:

1
2

(F[V(r) + wj(r);x] - F[V(r) - wj(r);x]) )

∑
k)1

K

∑
l)1

K

qkl�k(x)∫ �l(r′)wj(r′)dr′, with j ) 1, ..., J

(A.1)

Φ(r) ) -V(r) - ∫ F(r′)
|r - r′| dr′ (A.2)

Φ[V(r) + w(r);x] ) -V(x) - w(x) -

∫ F[V(r);r′] + ∫ ( δF(r′)
δV(r′′))N

w(r′′)dr′′ + ...

|x - r′| dr′
(A.3)
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Application of the arguments used in Section 2 now leads
to the subsequent equations for the expansion coefficients
qkl:

Analogously to eq A.1, this set of equations could yield a
substantial improvement to the computational efficiency. A
major advantage of this last approach is that the molecular
electrostatic potential has a much smoother behavior than
the electron density so that convergence is expected to be
more easily attained.

References

(1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms
and Molecules; Oxford University Press: New York, 1989.

(2) Chermette, H. J. Comput. Chem. 1999, 20, 129–154.

(3) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. ReV.
2003, 103, 1793–1873.

(4) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J.
Quantum Chem. 2005, 101, 520–534.

(5) Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. ReV. 2006,
106, 2065–2091.

(6) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem.
Phys. 1978, 68, 3801–3807.

(7) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. ReV.
Lett. 1982, 49, 1691–1694.

(8) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105,
7512–7516.

(9) Pearson, R. G. Chemical Hardness; Wiley-VCH: New York,
1997.

(10) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049–
4050.

(11) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353–
360.

(12) Ayers, P. W.; Melin, J. Theor. Chem. Acc. 2007, 117, 371–
381.

(13) Ayers, P. W. J. Math. Chem. 2008, 43, 285–303.

(14) Ayers, P. W.; De Proft, F.; Borgoo, A.; Geerlings, P. J. Chem.
Phys. 2007, 126, 224107.

(15) Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem.
Phys. 2007, 126, 224108.

(16) Fievez, T.; Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings,
P. J. Chem. Theory Comput. 2008, 4, 1065–1072.

(17) Sablon, N.; De Proft, F.; Geerlings, P. J. Chem. Theory
Comput. 2009, 5, 1245–1253.

(18) Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554–
2557.

(19) Senet, P. J. Chem. Phys. 1996, 105, 6471–6489.

(20) Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94, 5559–
5564.

(21) Contreras, R.; Domingo, L. R.; Andrés, J.; Pérez, P.; Tapia,
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Abstract: We present a systematic study of the synergistic effects of popular approximations
to Møller-Plesset perturbation theory through the second order (MP2). This work applies the
density-fitting (DF) approximation for two-electron integrals, the dual-basis (DB) approximation
for the Hartree-Fock reference, and the use of “heavy augmented” Dunning basis sets for basis
set reduction, as well as combinations of these, to the S22 benchmark set of weakly bound
dimers. For each approach, we report an error analysis as well as relative speedups for the 22
interaction energies in the set. Compared to the MP2/aug-cc-pVTZ level of theory, the DB-DF-
MP2/heavy-aug-cc-pVTZ approach achieves an average speedup of 18 with a root-mean-square
error of only 0.076 kcal mol-1 (2%).

1. Introduction

In the past decade, the field of computational chemistry has
demonstrated that high-level calculations on small molecules
can in some cases achieve an accuracy comparable to that
of experimental results.1-5 A current challenge lies in the
development of approximations to robust levels of theory to
address larger systems of interest. Dispersion-dominated
interactions, for which dynamic electron correlation has been
shown to play an important role,6-11 have attracted signifi-
cant recent attention. When applying computational tech-
niques to large-scale problems, long-range interactions can
accumulate and must be accounted for properly. While an
accurate description is provided by highly correlated methods
such as coupled-cluster theory,12-14 the steep computational
cost of such methods constrains their applicability to systems

of but a few dozen atoms with modest basis sets. To
overcome this problem, ongoing research efforts focus on
two fronts: (1) the modification of established methods by
adding adjustable parameters fit to experimental results or a
higher level of theory or (2) the development of approxima-
tions to robust levels of theory that maintain their inherent
accuracy while reducing the cost.

The strategy of incorporating ad hoc terms with fitted
parameters has shown great success for methods such as
DFT-D (which adds a scaled, damped dispersion correction
to a DFT functional).15-17 However, there remains no means
of systematically improving the accuracy, and such methods
sometimes require numerous parameters trained upon specific
test sets to produce high-quality results. Correlated wave
function methods have also been modified by fitted param-
eters in spin-component-scaled Møller-Plesset perturbation
theory (SCS-MP2),18-22 spin-opposite-scaled Møller-Plesset
perturbation theory (SOS-MP2),23 and spin-component-
scaled coupled-cluster with singles and doubles theory (SCS-
CCSD).24 MP2 tends to give reasonably reliable results for
certaintypesofnoncovalent interactions(suchasalkane-alkane
interactions and H-bonded interactions). In cases where MP2
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exhibits significant errors (e.g., π-stacking interactions), the
scaled MP2 methods such as SCS-MP2 tend to perform
well.21 Even in cases where very accurate binding energies
are desired for noncovalent interactions, MP2 remains a
critical ingredient in the theoretical procedure. When bench-
mark-quality results are needed, the current standard proce-
dure is to evaluate the binding energies in the MP2 complete
basis set limit and then to correct for higher-order correlation
terms by adding a ∆CCSD(T) correction [evaluated as the
difference between CCSD(T) and MP2 binding energies in
a smaller basis set].6,7 Thus, whether one uses bare MP2,
scaled MP2, or MP2 in conjunction with CCSD(T) correc-
tions, MP2 computations remain important in studies of
noncovalent interactions, and it is useful to explore ap-
proximations for speeding up these MP2 computations and
to assess the associated errors.

In electronic structure theory, the evaluation and storage
of four-index integrals is a common bottleneck. Various
approaches to this problem have been explored, such as
resolution of the identity25-33 [now commonly referred to
as density fitting (DF)], Cholesky decompositions34-43 (CD),
and pseudospectral techniques.44-46 In the DF treatment,
four-index integrals (µν|Fσ) are approximated by summations
over three-index quantities:

where [J-1]PQ is the inverse of the Coulomb metric evaluated
in an auxiliary basis set:

The three-index quantity (µν|P) serves to cast the product
(µν| onto the auxiliary basis via the Coulomb metric

While density-fitting does not lower the asymptotic scaling
of MP2, it does reduce the prefactor significantly, with
speedups in the range of 2 to 5.5 reported.32,47 There exist
many more methods for speeding up the evaluation of the
correlation energy (e.g., local molecular orbital approaches
such as local-MP232,33), yet the application of DF alone is
often sufficient to reduce the cost of the correlation energy
computation to the point that the time needed for the
underlying self-consistent field (SCF) becomes the rate-
determining step.

Numerous algorithmic advances have been achieved over
the past three decades to improve SCF efficiency. These
range from Pulay’s direct inversion of iterative subspace48,49

(DIIS), which minimizes the number of SCF iterations, to
modern linear scaling methods.50-54 Two recent, similar
advances in SCF theory are dual-basis techniques55-60 to
project the SCF energy from a smaller basis set and per-
turbative corrections to estimate the SCF complete basis set
limit.61

The dual-basis (DB) approximation proposed in the work
of Steele et al.60 involves performing an iterative SCF in a

small basis and then taking a single Roothan diagonalization
step in a larger target basis set. In practice, the small basis
is typically a specially designed subset of the target basis
set, although this restriction is not imposed by the theory.
Once the SCF is converged with the small basis set, the
occupied molecular orbital (MO) coefficients are projected
onto the larger basis via

where S is the atomic orbital (AO) overlap matrix, i
represents a MO index, Greek letters represent AO indices,
and barred indices signify large-basis quantities. Using the
newly constructed coefficient matrix, the new density matrix
P is formed, and a single Fock matrix is built and diago-
nalized. After including some first-order corrections, the DB-
SCF energy is shown to be

where ∆P ) P′ - P is the difference between the postdi-
agonalization density matrix P′ and the small basis density
matrix P (projected into the large basis). The small truncated
basis sets used in the dual-basis methods have already been
implemented62 in the Q-Chem 3.2 program suite for several
Pople and Dunning basis sets.

Another broadly employed approximation is the truncation
of the aug-cc-pVXZ (X ) D, T, Q) basis sets by eliminating
diffuse functions from hydrogen atoms. These truncated basis
sets are commonly referred to as heavy-aug-cc-pVXZ and
are often abbreviated as haXZ (X ) D, T, Q). For biological
applications and polymer studies, where a large number of
hydrogens are present, haXZ can introduce a significant
savings. Dropping augmented functions on hydrogen has
been shown to have a small effect on properties such as
interaction energies for nonbonded complexes.47 The DF,
DB, and haXZ approximations have all been developed
independently. In this work, we systematically examine the
practicability of combining these approximations and evalu-
ate the magnitude of accumulated errors and attainable
speedups. The S22 benchmark set63 has been adopted
because of its focus on noncovalent complexes, which are
theoretically challenging.

Recent work by Steele et al. has shown that by combining
DB and DF approximations within MP2, one can expect root-
mean-square errors (RMSEs) of 0.043 and 0.019 kcal mol-1

for the MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels of
theory, respectively, for the S22 set.60 Their timings focus
mainly on evaluating DB-DF-MP2 analytical gradients. In
this work, we present an error and efficiency analysis for
each approximation independently, then repeat with the S22
set for the combination of approximations, thereby permitting
dissection of any errors incurred in the energy, as well as
elucidating the origins of the speedup. We also consider a
series of linear alkanes to examine how these approximations
behave as a function of increasing system size. Timings are
compared to those from some other methods such as density
functional theory.

(µν|Fσ) ≈ ∑
PQ

(µν|P)[J-1]PQ(Q|Fσ) (1)

[J]PQ ) ∫P(r1)
1

r12
Q(r2) d3r1 d3r2 (2)

(µν|P) ) ∫ µ(r1) ν(r1)
1

r12
P(r2) d3r1 d3r2 (3)

Cµi ) ∑
µν

∑
λ

Sµν
-1SνλCλi (4)

Edualbasis ) Esmallbasis + ∑
µν

∆PµνFµν (5)
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2. Theoretical Approach

2.1. Efficiency Study of Approximate MP2 on Lin-
ear Alkanes. To evaluate gains by approximate MP2
methods, we examine a series of linear alkanes (CnH2n+2).
Recent work has considered the effect of RI,64,65 Cholesky,66,67

and atomic-orbital-based MP268 approximations on linear
alkanes. Single-point energy computations were performed
using B3LYP, DB-B3LYP, MP2, DB-MP2, DF-MP2, and
DB-DF-MP2 with the aug-cc-pVDZ basis set. For all dual-
basis approximations, we employed the optimized basis set
of Steele et al.60 referred to as racc-pVDZ, which has been
shown to reproduce the target basis set (aug-cc-pVDZ) with
minimal error in total energy. For the density-fitting auxiliary
basis sets, we employed the basis set from Hättig and
co-workers69,70 referred to as rimp2-aug-cc-pVDZ. In this
work, we will only be density-fitting the MP2 contribution,
not the underlying SCF, as that capability is not currently
implemented in Q-Chem 3.2. The frozen-core approximation
was employed for all of the perturbative methods. Alkane
geometries were constructed from the following parameters:
rCC ) 1.53 Å, rCH ) 1.09 Å, and θCCC ) 109.5°. For each
level of theory, we report the overall user time as well as a
decomposition of SCF and MP2 user times. For the tests
performed, I/O time was typically minor; hence user times
were very similar to wall times.

All computations were performed without taking advan-
tage of spatial symmetry. All alkane computations used the
Q-Chem 3.262 program suite on an Altus 1702 server fea-
turing dual AMD Opteron 2378 processors (2.4 GHz, Quad
Core), 32 GB of DDR2 RAM, and 2 × 1 TB 7200 rpm
RAID-0 local disks. The SCF was converged to 10-8 hartree,
and the integral threshold was 10-13.

2.2. Performance Analysis of Approximate MP2 on
the S22 Set. For a detailed analysis of the performance (both
speedups and errors) by various approximate MP2 methods,
we chose the S22 benchmark set,63 which features diverse
types of nonbonded interactions over a wide range of system
sizes, from a water dimer (six atoms) to a hydrogen-bonded
adenine-thymine complex (30 atoms). Benchmark-quality
CCSD(T)/CBS reference binding energies are available for
this test set.63,71 For each of the 22 complexes, we report
the interaction energy and the total user time for MP2, DB-
MP2, DF-MP2, and DB-DF-MP2 with the aug-cc-pVDZ,
aug-cc-pVTZ, heavy-aug-cc-pVDZ, and heavy-aug-cc-pVTZ
Dunning basis sets [a heavy-aug-cc-pVXZ (X ) D,T) basis
set consists of cc-pVXZ on hydrogen atoms and aug-cc-
pVXZ on all other atoms]. The choice of the DB basis set
and DF auxiliary basis is as described above. All interaction
energies were corrected for basis-set superposition error
(BSSE) using the counterpoise correction scheme outlined
by Boys and Bernardi,72 and individual calculations em-
ployed the frozen-core approximation. The benchmark
machine for the S22 test set is an Intel Xeon (3.2 GHz, single
core), with 4 GB of DDR2 RAM and a 150 GB local disk.
The SCF was converged to 10-8 hartree, and the integral
threshold was 10-13. This work focuses on approximating
three computations: MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ,
and MP2/CBS(aDZ,aTZ), where CBS(aDZ,aTZ) refers to a

two-point extrapolation as defined by Halkier et al.73 using
aug-cc-pVDZ and aug-cc-pVTZ correlation energies. All
computations in this part of the study use one of these three
canonical MP2 results as a reference point.

3. Results and Discussion

3.1. Efficiency of Approximations to MP2 for Linear
Alkanes. In the following analysis, MP2 will be discussed
in terms of two components: (a) the underlying SCF
computation and (b) the evaluation of the MP2 correlation
energy (including the transformation of the atomic orbital
integrals to the molecular orbital basis). Using the alkane
test cases, we investigate how the DF, DB, and haXZ
approximations affect the speed and accuracy of the com-
putation. For a medium-sized molecule such as C20H42, the
underlying SCF takes 33% of the total user time as shown
in Figure 1a. The MP2 contribution, which formally scales
as O(N5), dominates over the SCF, which formally scales
as O(N4), because of the AO to MO transformation required.
(Of course, actual computational scalings with respect to
system size will be lower than these formal scalings because
of techniques such as integral prescreening; moreover,
integral prescreening will work best in one-dimensional
systems such as these.) As system size or the basis set
increases, an increasing fraction of time will be spent in the
MP2 portion of the computation. It is this costly step that
DF abates by changing the complexity of the AO to MO
transformation from O(N5) to O(N4) while increasing the
correlation energy evaluation from O(N4) to O(N5), but with
a much lower prefactor than before. Figure 1b shows how
DF-MP2 reduces the time to compute the MP2 correlation
energy, shifting the majority of the computation time to the
underlying SCF. For C20H42, 90% of the time to compute
the DF-MP2 energy is spent in the SCF, to obtain an overall
speedup of 2.46 relative to traditional MP2.

Now that the majority of the work has been shifted to the
underlying SCF, we investigate dual-basis techniques that
can drastically reduce the time to compute this stage. Figure
2 shows the DB-MP2 speedup to be only 1.18 relative to
MP2 for C20H42, but this is only because of the large amount
of time spent computing the correlation energy (and accord-
ingly, the small cost of SCF) in the absence of the DF
approximation. Figure 2 shows that the combination of the
DF and DB approximations can yield speedups of 4.94 for
C20H42. Within DB-DF-MP2, the bottleneck is the SCF in
the small basis, which consumes 54% of the total compute
time for C20H42. To put these improvements into context,
we compared each method to B3LYP and dual-basis B3LYP
(DB-B3LYP) in Figure 2, demonstrating that DF-MP2 is
competitive with B3LYP and that DB-DF-MP2 is competi-
tive with DB-B3LYP for system sizes upward of C20H42.
This implies that the overhead in computing the correlation
contribution within DFT is comparable to the time to
compute the density fitted correlation energy in MP2. Note,
however, that DF-MP2 and DB-DF-MP2 are still not
competitive with any pure DFT method that lacks Hartree-
Fock exchange.
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For the systems investigated, the errors of all of these
approximations scale linearly with system size. DB incurs an
average error of 0.027 kcal mol-1 per atom, DF incurs an error
of 0.006 kcal mol-1 per atom, and DB-DF incurs and error
of 0.033 kcal mol-1 per atom.

3.2. Performance Analysis of Approximate MP2 on
the S22 Set. To analyze the error introduced by the DB,
DF, and haXZ approximations, we compute interaction
energies for each of the 22 complexes in the S22 benchmark
test set.63 Table 1 presents the root-mean-square error
(RMSE) for the test set at each level of theory. In trying to
reproduce MP2/aug-cc-pVDZ results, we see that the RMSE
from DF is 0.003 kcal mol-1 while achieving an average

speedup of 1.3. The magnitude of this error is very reasonable
when compared to other remaining errors such as basis set
incompleteness error (BSIE). On the other hand, the DB
approximation incurs a RMSE of 0.043 kcal mol-1. While
an order of magnitude larger, the DB error is still rather
small, especially considering it has a speedup of 1.78.
Applying both of the approximations simultaneously shows
that they do indeed compound well, achieving a speedup of
3.1, but the errors are additive also, for a RMSE of 0.045
kcal mol-1. The use of heavy-aug-cc-pVDZ in place of aug-
cc-pVDZ yields a speedup of 1.74 but at the cost of 0.120
kcal mol-1 average error. This average error is still small
considering that the S22 MP2/aug-cc-pVDZ interaction
energies range from -0.39 to -18.41 kcal mol-1, but it may
not be acceptable in some high-accuracy applications. The
largest error introduced by neglecting diffuse functions on
H atoms is 0.22 kcal mol-1 for the ethylene dimer test case,
which has four closely packed hydrogens. Heavy-augmented
basis sets should be avoided for systems with multiple
hydrogen-hydrogen contacts, such as methane and ethene
dimers.

To determine how well these approximations perform for
larger basis sets, they were also tested against the MP2/aug-
cc-pVTZ level of theory. For this larger basis set, RMSEs
are reduced for all three approximations: DB has a RMSE
of 0.017 kcal mol-1 (down from 0.043 kcal mol-1), DF has
a RMSE of 0.001 kcal mol-1 (down from 0.003 kcal mol-1),
and the use of heavy-augmented basis sets has a RMSE of
0.070 kcal mol-1 (down from 0.120 kcal mol-1). When all

Figure 1. The relative user time and decompositions of (a) MP2, (b) DF-MP2, (c) DB-MP2, and (d) DB-DF-MP2 are shown for
the alkane series methane (CH4) through dodecane (C20H42). The percentages are computed by taking the C20H42 as a reference,
with the total broken into SCF and MP2 correlation components. For the DB approximations, SCF (small) refers to the percentage
of time to solve the iterative part, and SCF (large) refers to the percentage of time to perform the single Fock build in the target
basis.

Figure 2. Total user times of MP2, DF-MP2, DB-MP2, DB-
DF-MP2, B3LYP, and DB-B3LYP all with aug-cc-pVDZ basis
set for the alkanes methane (CH4) through dodecane (C20H42).
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three approximations are combined, speedups of 18.0 are
achieved at the cost of 0.076 kcal mol-1 RMSE. Considering
the large gain in computational efficiency, these errors are
tolerable, and DB-DF-MP2/haTZ is recommended for typical
studies of nonbonded interactions.

We also examined how complete basis set (CBS) extrapo-
lations affect the error for each approximation. CBS ex-
trapolations consistently reduce the RMSE (shown at the
bottom of Table 1) for the approximations considered. The
extrapolations particularly abate the error caused by the use
of heavy-augmented basis sets, reclaiming 0.026 kcal mol-1

on average. The compounding of all three approximations
and CBS extrapolations [DB-DF-MP2/CBS(haDZ,haTZ)]
yields a RMSE of 0.056 kcal mol-1 and a speedup of 15.7.
This speedup is not quite as large as that observed for the
DB-DF-MP2/haTZ (18.0), because the CBS extrapolations
include haDZ computations which have a lesser efficiency
gain. We note that MP2/CBS(aDZ,aTZ) has a 0.118 kcal
mol-1 RMSE compared to MP2/CBS(aTZ,aQZ)71 for the
S22 test set.

The DF-MP2 speedups in our study are not as large as
might be expected. We were forced to use a core Hamiltonian
guess to be consistent between the DF and DB tests, because
in Q-Chem 3.2, one cannot use the DB technique in

conjunction with more advanced initial orbital guesses. The
core Hamiltonian guess requires more SCF iterations to
converge, thereby increasing the time spent in SCF. If
superior SCF guesses were used, such as superposition of
atomic densities (SAD) or a small basis projection, the overall
computation would spend less time in the SCF and more
time in the MP2 correlation. This would cause the DF
methods to have better overall speedups and DB methods
to have slightly smaller speedups.

To better understand the errors incurred through these
approximations, a decomposition by binding type is shown
in Table 2. Reference 63 defines the division of complexes
between hydrogen-bonded, dispersion-bound, and mixed-
influence subgroups. As shown in Table 2, dispersion-bound
complexes experience a larger mean percent error than the
hydrogen-bonded subset for every approximation examined,
by a factor of 1.7-3.9, thereby suggesting the approximations
examined in this work, particularly haXZ, may have difficulty
with longer-range interactions. For the CBS limit, we report
errors among dispersion-dominated systems of 0.02%,
0.29%, 0.28%, and 1.26% for DF, DB, DB-DF, and heavy-
augmented basis sets, respectively, while the corresponding
value for hydrogen-bonded complexes in the last case is only
0.64%.

Table 1. Mean Unsigned Error (MUE), Root Mean Square Error (RMSE), Average Percent Error, and Average Speedup
Analysis of Approximating MP2/aug-cc-pVXZ and MP2/CBS(aDZ,aTZ) for the S22 Test Set of Complexesa

reference level of theory speedup MUE RMSE % error

MP2/aug-cc-pVDZ MP2/haDZ 1.74 0.113 0.120 4.26
DB-MP2/haDZ 2.61 0.106 0.120 4.05
DF-MP2/haDZ 2.29 0.107 0.116 4.20
DB-DF-MP2/haDZ 4.12 0.104 0.119 3.99
DB-MP2/aDZ 1.78 0.034 0.043 0.82
DF-MP2/aDZ 1.31 0.002 0.003 0.04
DB-DF-MP2/aDZ 3.09 0.036 0.045b 0.84

MP2/aug-cc-pVTZ MP2/haTZ 1.87 0.068 0.070 1.95
DB-MP2/haTZ 5.76 0.072 0.077 2.01
DF-MP2/haTZ 2.43 0.066 0.069 1.91
DB-DF-MP2/haTZ 18.04 0.071 0.076 1.97
DB-MP2/aTZ 3.25 0.012 0.017 0.20
DF-MP2/aTZ 1.30 0.001 0.001 0.02
DB-DF-MP2/aTZ 10.73 0.012 0.017c 0.19

MP2/CBS(aDZ,aTZ) MP2/CBS(haDZ,haTZ) 1.86 0.039 0.044 0.94
DB-MP2/CBS(haDZ,haTZ) 5.48 0.050 0.057 1.08
DF-MP2/CBS(haDZ,haTZ) 2.42 0.038 0.043 0.92
DB-DF-MP2/CBS(haDZ,haTZ) 15.73 0.049 0.056 1.05
DB-MP2/CBS(aDZ,aTZ) 3.14 0.017 0.023 0.26
DF-MP2/CBS(aDZ,aTZ) 1.30 0.001 0.001 0.01
DB-DF-MP2/CBS(aDZ,aTZ) 9.65 0.017 0.022 0.26

a All errors in kilocalories per mole. b Reference 60 reports a RMSE of 0.043 kcal mol-1. c Reference 60 reports a RMSE of 0.019 kcal
mol-1.

Table 2. Mean Unsigned Error (MUE), Root-Mean-Square Error (RMSE), and Average Percent Error for the Interaction
Energies for Each Subgroup in the S22 Test Set in Kilocalories Per Molea

H bonding dispersion mixed

level of theory MUE RMSE % error MUE RMSE % error MUE RMSE % error

MP2/CBS(haDZ,haTZ) 0.059 0.061 0.64 0.029 0.033 1.26 0.031 0.032 0.88
DB-MP2/CBS(haDZ,haTZ) 0.057 0.065 0.56 0.051 0.057 1.60 0.043 0.047 1.00
DF-MP2/CBS(haDZ,haTZ) 0.058 0.060 0.63 0.027 0.032 1.21 0.030 0.031 0.86
DB-DF-MP2/CBS(haDZ,haTZ) 0.057 0.064 0.55 0.049 0.055 1.56 0.042 0.046 0.98
DB-MP2/CBS(aDZ,aTZ) 0.020 0.025 0.17 0.018 0.024 0.29 0.015 0.017 0.32
DF-MP2/CBS(aDZ,aTZ) 0.000 0.000 0.00 0.001 0.001 0.02 0.000 0.000 0.01
DB-DF-MP2/CBS(aDZ,aTZ) 0.019 0.025 0.17 0.018 0.023 0.28 0.015 0.017 0.32

a All values are relative to MP2/CBS(aDZ,aTZ).
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4. Conclusions

This work demonstrates that with a careful choice of
approximations, MP2-quality results can be computationally
affordable for systems with a few dozen atoms or larger
without introducing significant error. Density fitting reduces
the time to compute the MP2 correlation energy. Dual-basis
techniques abate the cost of the underlying SCF, and heavy-
augmented functions speed up both parts of the computation
relative to the fully augmented basis sets. Except for com-
parisons using the smaller heavy-aug-cc-pVDZ basis set, all
of these approximations show a significant speedup while
never incurring a RMSE greater than 0.045 kcal mol-1 for
the S22 test cases. We also demonstrate that all of these
approximations do indeed combine very efficiently. In future
tests, density fitting will be extended to the SCF stage
(currently not implemented in Q-Chem). The use of DF
within the DB-SCF framework should be a significant stride
toward achieving a level of theory that is not only accurate
but applicable to a wide range of systems. Q-Chem also will
soon have the capability to perform perturbative SCF
approaches as outlined in the work of Gill et al.61 These
new computational tools will open up larger systems of
interest to ab initio techniques while introducing errors which
are negigible in most applications.
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(9) Lee, E. C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.;
Kim, K. S. J. Phys. Chem. A 2007, 111, 3446–3457.
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Abstract: Global hybrids, which add a typically modest fraction of the exact exchange energy
to a complement of semilocal exchange-correlation energy, are among the most widely used
density functionals in chemistry and condensed matter physics. Here we briefly review the formal
and practical advantages and disadvantages of global hybrids. We point out that empiricism
seems unavoidable in the construction of global hybrids, as it is not for most other kinds of
density functional. Then we use one to three parameters to hybridize many semilocal functionals
(including recently developed nonempirical generalized gradient approximations or GGA’s and
meta-GGA’s). We study the performance of these global hybrids for many properties of sp-
bonded molecules composed from the lighter atoms of the periodic table: atomization energies,
barrier heights, reaction energies, enthalpies of formation, total energies, ionization potentials,
electron affinities, proton affinities, and equilibrium bond lengths. We find several new global
hybrids that perform better in these tests than standard ones, and we correct some errors in
literature assessments. We also discuss the representativity of small fitting sets and the adequacy
of various Gaussian basis sets.

1. Introduction to Semilocal and Global
Hybrid Functionals

For the description of electronic states in atoms, molecules,
and solids, correlated wave function methods can be accurate
but very expensive. Kohn and Sham1 showed that, given the
exact density functional for the exchange-correlation energy,
the ground-state energy and density of interacting electrons
in a multiplicative external potential could be found exactly
and efficiently from a single Slater determinant of self-
consistent orbitals that see a multiplicative effective potential.
The exchange-correlation energy arises from the tendency
of electrons to avoid one another due to fermion antisym-
metry and Coulomb repulsion. Without it, chemical binding
would be weak or absent.2

The exact exchange-correlation energy can be expressed
as a coupling constant integration or adiabatic connection
formula:3-45

Here nxc(rb,rb′) ) nx(rb,rb′) + nc(rb,rb′) is the density at position
rb′ of the exchange-correlation hole around an electron at rb.
Note that

is averaged over the strength λ of the Coulomb repulsion
λ/|rb′ - rb| at fixed electron density n(rb). The holes satisfy
important sign and sum rules:3-5

* Address correspondence to csonkagi@gmail.com.
† Budapest University of Technology and Economics.
‡ Tulane University.

Exc ) (1/2)∫ d3r∫ d3r′ n( rb)nxc( rb, rb′)/ | rb′- rb| (1)

nxc( rb, rb′) ) ∫
0

1

dλ[nx( rb, rb′) + nc,λ( rb, rb′)] (2)

nx( rb, rb′) e 0, ∫ d3r′nx( rb, rb′) ) -1,

∫ d3r′nc( rb, rb′) ) 0 (3)
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The first approximation for the spin density functional for
exchange and correlation, the local spin density approxima-
tion1,6,7 (LSDA), was constructed to be exact for a uniform
electron gas and subsequently shown3-5 to satisfy the hole
constraints of eq 3. Later semilocal functionals8-15 were
constructed nonempirically to satisfy these and many other
physical or exact constraints. Although recent nonempirical
functionals are not constructed from hole models, constraint-
satisfying hole models16-18 have been reverse engineered
from them. All nonempirical semilocal functionals, including
LSDA, are by construction exact in the uniform density limit.
Some semilocal functionals (e.g., refs 19 and 20) have also
been constructed empirically, by fitting to chemical data.

A semilocal (sl) spin density functional:

can be evaluated as a computationally efficient single
integral, using ingredients available at position rb, such as
the local spin densities nσ(rb) with σ ) v or V (as in LSDA)
or additionally their gradients ∇nσ(rb) as in a generalized
gradient approximation (GGA)8-12,14,19,20 or further the spin-
resolved positive orbital kinetic energy densities τσ(rb) (as in
a meta-GGA).12,15,21 Fully nonlocal approximations,22 which
require a double integral as in eq 1, can be considerably more
costly. For this reason, an efficient method23 was developed
to deal with the full nonlocality of an early van der Waals
density functional.24 Semilocal approximations can be ex-
pected to work only when the exact exchange-correlation
hole density is well-localized around its electron,25 as it is
in atoms and in many molecules and solids near equilibrium,
and even when (at both the interacting and noninteracting
levels, the latter possibly with the help of symmetry
breaking)26 electrons are not shared between separated
subsystems in the dissociation limit.27 However, stretched
bonds that arise in transition states of chemical reactions or
in the dissociation limits of some radical or heteronuclear
molecules, etc., require full nonlocality.25,28-30 Long-range
van der Waals interactions also require full nonlocality.

In a typical atom, exchange and correlation can be
separately described by good semilocal functionals. In the
valence region of a typical molecule near equilibrium, both
the exact exchange energy and the exact correlation energy
are fully nonlocal, but their full nonlocalities tend to cancel.
Thus semilocal approximations for the exchange-correlation
energy can work even there. This error cancellation arises
because the exact nxc tends to be deeper and more short-
ranged in |rb′ - rb| (and thus more semilocal) than either the
exact nx(rb,rb′) or the exact nc(rb,rb′) alone. While the dynamic
correlation energy of the molecule is approximated by Ec

sl,
its static or left-right31 fully nonlocal correlation energy can
be estimated from the negative quantity (Ex

sl - Ex
exact) -

∑(atoms)(Ex
sl - Ex

exact), where the last sum is over the
constituent free atoms.

The global hybrid (gh) idea, due to Becke,32,33 introduces
some full nonlocality into the calculation but only at the level
of Ex

exact, which can be evaluated semianalytically from the

Kohn-Sham orbitals in some computer codes. In its simplest
(one parameter) version:34

where the exact-exchange mixing parameter a takes an
empirical value in the range 0 e a e 1. For a in this range,
both a and 1 - a are positive, so all the hole constraints of
eq 3 are preserved, including the sign constraint on nx.
Because the hybrid functional statistically improves the
atomization energies over its semilocal parent, a better
estimate of the static correlation energy in the molecule is
thus (1 - a){(Ex

sl - Ex
exact) - ∑(atoms)(Ex

sl - Ex
exact)}, which

is more nearly independent of the choice of Ex
sl when a is

fitted to the atomization energies for that choice. Because
eq 5 is linear in Ex

exact, it is properly size extensive: It makes
the energy of a system of well-separated subsystems equal
to the sum of the energies of the subsystems. Nonlinear
mixing should only (and cautiously) be done at deeper levels
of the exact-exchange ingredient, such as the exact-exchange
energy density n(rb)εx

exact(rb) (as in the local hybrids25 discussed
around eq 6) or even the exact-exchange hole density
nx

exact(rb,rb′) (as in range-separated hybrids, e.g., ref 35). Note
that the range-separated or screened exchange hybrid of
Heyd, Scuseria, and Ernzerhof (HSE)36 is designed to imitate
the performance of the standard Perdew-Burke-Ernzerhof
(PBE) global hybrid PBE0, while eliminating some of the
practical problems of exact exchange in metals.

Perhaps the most convincing argument for eq 5 is the least
sophisticated one: Semilocal exchange-correlation typically
overestimates atomization energies and underestimates en-
ergy barriers to chemical reactions, while exact exchange
without correlation makes errors of the opposite sign, so that
mixing of the two will yield better atomization energies and
barriers than either alone.

Becke32 also justified eq 5 on the basis of the adiabatic
connection in eqs 1 and 2: The errors of semilocal exchange
and correlation are expected to cancel substantially at λ ) 1
but cannot cancel at λ ) 0 where only the exchange hole
survives (since nx ∼ λ0, while nc,λ ∼ λ1), so some exact
exchangeshouldbemixedwithsemilocalexchange-correlation.
This argument has been quantified34 to predict a mixing
parameter a ) 0.25, which is the basis for the standard PBE
hybrid PBE0.37,38 This prediction for a uses a model for the
λ dependence of ∆Ec,λ and must be understood for what it
is. First, it applies only to atomization energies, not to other
properties. Second, it relies on the qualitative empirical
observation that fourth-order perturbation theory in the
electron-electron interaction is fairly accurate for atomiza-
tion energies. Third, even for atomization energies (or for
formation enthalpies based upon calculated atomization
energies), it is only a rough estimate, reliable within perhaps
a factor of 2. As we will see below, values of a fitted to
formation enthalpies vary from from 0.60 for PBEsol14

GGA to 0.32 for the PBE11 GGA to 0.1 for the Tao-
Perdew-Staroverov-Scuseria (TPSS)13 and revised TPSS
(revTPSS)15 meta-GGA’s. Improving the underlying semilo-
cal functional reduces the value of a needed to fit the
atomization energies or formation enthalpies and so worsens
the barrier heights. The converse is that semilocal functionals

Exc
sl [nv, nV] )

∫ d3rn( rb)εxc
sl (nv( rb), nV( rb), ∇nv( rb), ∇nV( rb), τv( rb), τV( rb)) (4)

Exc
gh ) aEx

exact + (1 - a)Ex
sl + Ec

sl (5)
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with highly overestimated atomization energies, like the PBE
variant for solids (PBEsol),14 can hybridize to produce
excellent barrier heights, as we will also show. Some global
hybrids39,40 thus employ highly fitted semilocal parts in-
tended not to be accurate by themselves but to work well
with a fraction of exact exchange. Starting from a stand-
alone semilocal functional, some fraction of exact exchange
can be expected to improve most calculated properties, but
there is no reason to expect that a single fraction will be
optimal for most or all.

Global hybrids with a < 1 typically satisfy most of the
exact constraints satisfied by the underlying semilocal
functional (and all of those for TPSS and revTPSS) but
cannot satisfy any additional exact constraints and thus are
unavoidably empirical. To satisfy additional constraints and
to make optimum use of sophisticated nonempirical meta-
GGA’s, one can go to the local hybrid25,41,42 (lh) level in
which the mixing fraction a(rb) varies with position:

where εx(rb) is the exchange energy per electron at rb. But
local hybrids seem to require even more empirical parameters
than global hybrids do, because the additional exact con-
straints are only limits: Parameters are needed to control how
these limits are approached.25 Local hybrids also have a
potential problem which global ones do not: the nonunique-
ness of energy densities like n(rb)εx(rb).43,44

Global hybrids often achieve useful accuracy, even in cases
where their success is unexplained. They improve atomiza-
tion energies and related formation enthalpies of molecules
as well as energy barriers for reasons we have already
discussed. But they also improve equilibrium bond lengths,
and they can slightly improve or worsen total energies,
ionization energies, electron affinities, and proton affinities,45

as we shall see below. In solid-state physics, they can often
improve the description of strongly correlated solids.46

Improvements to fundamental band gaps47 and point defect
energies48 have also been reported. It should be remembered,
however, that the improved orbital-energy gaps arise from
the use of a fraction of the nonmultiplicative Hartree-Fock
exchange potential. Using instead an optimized effective
Kohn-Sham multiplicative potential for the fraction of exact
exchange would reduce the orbital-energy gaps back to the
semilocal range, without much affecting ground-state ener-
gies and energy differences.49,50 Thus explanations of the
solid-state successes of global hybrid functionals, based upon
their improved orbital-energy gaps, are unconvincing or at
least incomplete. There are also documented cases where
standard global hybrids are consistently less accurate or as
inaccurate as semilocal functionals, including properties of
transition-metal compounds51 and the adsorption energies of
CO on transition-metal surfaces.52

While the exact total energy of a separated open system
varies linearly as a function of average electron number
between adjacent integers,53 the energy predicted by a
semilocal density functional approximation is concave
upward, and the exact-exchange or Hartree-Fock energy is

concave downward.54 As a result, semilocal functionals can
fail53 for separated open systems of fluctuating electron
number, such as the fragments of stretched molecular AB28,55

or A2
+.29 Global hybrid functionals with sufficient exact

exchange can clearly fix these problems,55 in part. For
example, we have computed the many-electron self-interac-
tion error29 ∆ ) E(He2

+, R ) 200 Å)sE(He)sE(He+), for
which the exact value is 0 kcal/mol. We find that ∆ is
determined mainly by the value of a, and not by the choice
of semilocal functional, and that ∆ is almost linear in a. With
the very different semilocal functionals BPW91, PBE,11 or
PBEsol,14 we find ∆ ) -96 kcal/mol for a ) 0 and ∆ )
-31 kcal/mol for a ) 0.60. We observed a similar tendency
for dissociating Li2

+ and F2
+.

In the next section, we will discuss three-parameter global
hybrids as originally proposed by Becke,32 which not only
fit a fraction of exact exchange but also scale the gradient
or inhomogeneity corrections to LSDA in the underlying
semilocal functional. Our plausibility arguments for this are
that the optimal inhomogeneity corrections are less well-
known (and indeed less well-defined for a given set of
arguments in eq 4) than is the uniform-density limit and that
the optimal inhomogeneity corrections change when some
exact exchange is included. Then we will construct one- or
three-parameter global hybrids for many semilocal function-
als, including the recently developed PBEsol14 GGA and
revTPSS15 meta-GGA that have not been hybridized before,
and assess them for a wide range of molecular properties.

2. B3PW91 and B3LYP Functionals

In 1993 Becke suggested the B3PW91 functional in the
following form:32

where b and c are multiplying factors that modify the
exchange and correlation gradient corrections, respectively.
Note that choice b ) 1 - a and c ) 1 leads to eq 5 when
the semilocal functional is BPW91 (B88 GGA exchange19

plus PW91 GGA correlation).10 Because the b and c
parameters provide more freedom than the single-parameter
hybrid of eq 5, the three-parameter form of eq 7 can give
somewhat better results if all three parameters are fitted to
experimental data. (We denote our new one parameter
hybrids with a subscript a, as in BPW91ha, and our new
three parameter hybrids with a subscript abc, as in
BPW91habc). Later the B3LYP empirical hybrid functional56

was constructed with exactly the same a ) 0.2, b ) 0.72,
and c ) 0.81 parameters proposed by Becke but with PW91
correlation swapped out. Instead the linear combination (1
- c) ·Ec

SVWN3 + c ·Ec
LYP was used for the correlation energy

in eq 7, where Ec
SVWN3 is the LSDA correlation energy in

the random phase approximation (which does not yield the
correct PW927 or SVWN557 homogeneous electron gas
limit). The LYP functional is self-correlation error free, but
it does not give the correct uniform gas limit and so produces
serious errors for metallic solids.58 However, despite these
construction problems, the B3LYP functional delivered good

Exc
lh ) ∫ d3r n( rb)[a( rb)εx

exact( rb) +

{1 - a( rb)}εx
sl( rb)] + Ec

sl (6)

Exc
B3PW91 ) a · Ex

exact + (1 - a) · Ex
LSDA + b · ∆Ex

B88 +

Ec
LSDA + c · ∆Ec

PW91 (7)
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results for small molecules, and it was preferred in many
areas of chemistry over the B3PW91 and other functionals.
The evidence for this is strong. Each of refs 20 and 32 has
been cited about 30 000 times, according to the Web of
Science. Recent results show several serious failures of the
B3LYP functional that may arise from its design pro-
blems.59-64 B3PW91 gives consistently better results for
large organic molecules.45,60 This better performance of
B3PW91 can be attributed to its correct behavior for the
homogeneous electron gas. (A similar attribution was made
for B3PW91 versus B3LYP atomization energies of met-
als).63 Note that part of the self-interaction error of BPW91
is removed in B3PW91 and B3LYP.

3. Test Sets

We shall use the following test sets:

In their early works Adamo and Barone use zero-point
energy (ZPE) corrected atomization energies, ∑D0, of the
small G2-32 test set to measure the performance of the one-
parameter hybrids (cf. eq 5).38,65 The G2-32 test set was
derived from the G2/97 test set66 by selecting the first 32
compounds that contain first-row elements (Z < 10).

The AE6 test set of Lynch and Truhlar67 provides a quick
and supposedly representative evaluation for the ZPE-
subtracted atomization energy, ∑De, of diverse molecular
systems. The set includes six molecules: SiH4, S2, SiO, C3H4,
C2H2O2, and C4H8.

The Kinetics9 database68,69 contains three forward barrier
heights, three reverse barrier heights, and three energies of
reaction for the three reactions in the BH667 database. We
use the optimized QCISD/MG3 geometries and the recent
spin-orbit corrected reference energies for AE6 and BH6.70

The G3/99 test set71 includes 223 standard enthalpies of
formation (without deleting the COF2 molecule, contrary to
the recommendation in ref 71), 88 ionization potentials, 58
electron affinities, and 8 proton affinities for compounds that
contain first- and second-row elements (Z < 18). For the
development of the first hybrid functionals, a smaller G2/97
test set was used (148 standard enthalpies of formation). The
G3-3 test set includes larger organic molecules and several
problematic inorganic compounds. The G3-3 and the G2/97
test sets together form the G3/99 test set.

The IP86 test set for gas-phase ionization potentials was
defined in ref 45. As the pure a ) 0 functionals have
convergence problems for H2S+ and N2

+, these were left
out from the 88 species of the original G3/99 test set.

The EA58 test set for gas-phase electron affinities and the
PA8 test set for gas phase proton affinities were taken from
the G3/99 test set.71

The T-96R contains equilibrium internuclear distances (re)
of the 86 neutral diatomic molecules and 10 diatomic
molecular cations.45

In this paper we shall show how one-parameter global
hybrids can be constructed from the BLYP, BPW91, PBE,
PBEsol, TPSS, and revTPSS functionals. The PBEsol and
revTPSS functionals were programmed by us. As we show
later, the selection of the PBEsol functional is particularly
interesting as it overbinds the most among the functionals

in this study. Thus it requires the largest exact-exchange
fraction for optimal performance on atomization energy test
sets. The results obtained by the new functionals will be
compared to the results obtained by the original three-
parameter B3PW91 and B3LYP functionals. We will discuss:

• The dependence of the results on the test sets and the
representativity of the G2-32 and AE6 test sets compared
to the G3/99 test set.

• The role of the basis sets.
• Is the original B3PW91 parametrization optimal for the

G3/99 test set?
• How do parameter values influence the performance of

the functionals?
• Is it possible to find better hybrid parameters for eqs 5

and 7 than the currently used values?

4. Thermochemical Properties

4.1. Results for the G2-32 Test Set. First we tried to
reproduce the earlier38,65 ZPE-corrected atomization energies,
∑D0, for the hybrids B1LYP, B1PW91, and PBE0 con-
structed from the BLYP, BPW91, and PBE functionals for
the G2-32 test set with a ) 0.25. We use the Gaussian 03
program for all calculations,72 the B3LYP/6-31G(2df, p)
optimized geometries, the ultra-fine grid, and the 6-311++
G(3df, 3pd) basis set, as in most of the original publications.
The amount of 25% exact exchange was set via Iop(3/76 )
0750002500) of the GAUSSIAN 03 program. While we were
able to reproduce PBE0 results,38 our B1LYP and B1PW91
results deviate considerably from the earlier results65 (cf.
Supporting Information). According to our results the PBE0,
B1LYP, and B1PW91 mean absolute errors (MAE) are 2.8,
4.8, and 5.0 kcal/mol, respectively, compared to the published
2.6, 3.1, and 5.4 kcal/mol.38,65 Thus the good PBE0 results
were reproduced, but the performance of B1LYP is not
significantly better than that of B1PW91, in disagreement
with the results of Adamo et al.65 The differences between
the published B1LYP and our results are the following (cf.
Supporting Information): (1) The calculated ∑D0 energies
do not agree for BeH (ours vs Adamo et al.: 54.4 vs 48.5
kcal/mol), ethane (656.0 vs 654.1 kcal/mol), and hydrazine
(402.1 vs 401.2 kcal/mol). For 22 compounds our results
agree precisely, and for the other 7 compounds the difference
is less than 0.6 kcal/mol. (2) Using the calculated ∑D0

energies by Adamo et al., we obtain MAE ) 4.8 kcal/mol,
in agreement with our current results. Consequently the
published value for the MAE of B1LYP (3.1 kcal/mol)65

should be corrected. (See the detailed energies in the
Supporting Information). Below we show that the BLYP
functional is not suitable for the construction of a one
parameter hybrid functional. The B1LYP functional yields
worse thermochemistry than the BLYP functional for more
adequate AE6 and G3/99 test sets. The origin of the ‘success’
of the B1LYP functional for the G2-32 test set is the
inappropriate choice of the test set.

4.2. Results for the AE6, BH6, and K9 Test Sets. Next
we used small but so-called representative test sets. Analysis
of mean error (ME) and MAE of the thermochemical results
obtained for AE6, BH6, and Kinetics9 shows the following
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(cf. Table 1): The ZPE-subtracted atomization energy, ∑De,
results in Table 1 show that most of the GGA functionals
yield positive ME for the AE6 test set (error ) theory -
experiment) and thus partly conserve the overbinding
tendency of the LDA. PBEsol, which uses the exact second-
order gradient coefficient for exchange valid for the slowly
varying limit over a wide range of s, shows the largest
overbinding, while PBE uses a coefficient about twice as
big and shows a considerably reduced overbinding, about
one-third of that for PBEsol. The BPW91, PW86PBE, TPSS,
and revTPSS functionals give much better results, small but
positive MEs (2-4 kcal/mol) and relatively small MAEs
(6-8 kcal/mol). The TPSS and revTPSS functionals give
the best results. The BLYP functional differs qualitatively
from these functionals, as it underbinds slightly (ME ) -1.7
kcal/mol).

Increasing the weight of the exact exchange according to
eq 5 decreases the ME values (increases the underbinding).
This leads to improvements of the MAE of the overbinding
functionals for the AE6 test set (cf. BPW91ha and PBEha in

Figure 1). However, as the BLYP functional underbinds for
the AE6 test set, no improvement is possible via exact
exchange mixing alone (eq 5). The good B3LYP results for
the AE6 test set mainly come from the reduced gradient
contribution to the exchange and from mixing the LDA and
LYP correlation functionals (cf. eq 7, b and c parameters
and the results in the Table 1). Note that the BLYP functional
overbinds for the G2-32 test set (ME ) 4.3 kcal/mol, cf.
Table S1, Supporting Information) and can be improved by
the exact-exchange mixing according to eq 5. In order to
resolve this contradiction between AE6 and G2-32 test set,
we shall check the validity of these results on the large G3/
99 test set (vide infra).

The BPW91, PW86PBE, PBE, and PBEsol overbinding
for the AE6 test set is readily decreased by the simple
inclusion of exact exchange (eq 5). We observed for
BPW91ha, PBEha, and PBEsolha hybrids that the ME shows
a quasilinear dependence on the value of the parameter a.
Close to the optimal values of a, the slopes are -38
(BPW91h) and -45 kcal/mol (PBEh). Figure 1 shows how
the larger positive ME is compensated by a larger amount
of exact exchange for the BPW91 and PBE functionals. The
optimal values for a are 0.15, 0.15, 0.32, and 0.5 for
BPW91ha, PW86PBEha, PBEha, PBEsolha, respectively (cf.
Table 1). Notice that meta-GGAs behave differently. Inclu-
sion of 10% of exact exchange worsens the MAEs for the
AE6 test set despite some improvements for the MEs.

Applying a ) 0.2 for the BPW91habc hybrid as proposed
by Becke gives too strong underbinding (cf. eq 5 and Table
1). However, this is compensated by the reduced exchange
and correlation gradient contributions via b and c parameters
in B3PW91 (cf. eq 7). The b and c parameters compensate
each other’s effect on the ME. A similar compensation effect
was observed earlier for H2 bond distance, total energy, and
electron density.73 We observed that, at fixed a, a 0.01
increase of the value of b is compensated by a 0.1 increase
of the value of c. For the BPW91h hybrid functional with a
) 0.15, we can obtain ME ) -0.6 kcal/mol with several
different combinations b and c. Table 1 shows that the same
ME can be obtained with b ) 0.81 and c ) 0.95, b ) 0.80
and c ) 0.85, b ) 0.79 and c ) 0.75, or even b ) 0.75 and
c ) 0.35. This latter combination provides also the smallest
(2.1 kcal/mol) MAE, and this can be reproduced with a )
0.20, b ) 0.70, and c ) 0.57 values in eq 7. These
BPW91habc hybrids are considerably better than the B3LYP
or B3PW91 functionals for the AE6 test set (cf. MAE )
2.6 and 4.0 kcal/mol, respectively, in Table 1). Note the
excellent performances of the M05-74 and M06-2X75 func-
tionals for these test sets (c.f. Table 1). The AE6 and BH6
species were included in the extensive (more than 400
species) fitting sets of these hybrid meta-GGA functionals.
The M06-2X functional performs the best and it applies more
than 30 fitted parameters. The M05- and M06-2X calcula-
tions were performed with the Gaussian 09 program.76

Table 1 shows that, among the semilocal functionals
applied to the BH6 and K9 test sets, the revTPSS functional
gives the best (but poor) results. The BPW91, BLYP, and
PW86PBE results are only slightly worse. The PBE and
PBEsol functionals give the worst results. The hybrids give

Table 1. Summary of Deviations (ME and MAE) from
Experiment of the Atomization Energies in the AE6 set and
the Reaction Energy Barriers in the BH6 set As Well As
the RMSE for the Kinetics9 (K9) Test Set Calculated
with the 6-311+G(3df, 3pd) Basis Seta

AE6 BH6 K9

functional a b c ME MAE ME MAE RMSE

BLYP 0.00 1.00 1.00 -1.7 6.6 -8.1 8.1 7.1
BPW91 0.00 1.00 1.00 2.4 6.9 -7.7 7.7 6.9
PW86PBE 0.00 1.00 1.00 2.1 7.8 -8.1 8.1 7.4
PBE 0.00 1.00 1.00 12.3 15.3 -9.6 9.6 8.8
PBEsol 0.00 1.00 1.00 35.8 35.8 -13.0 13.0 12.0
TPSS 0.00 1.00 1.00 3.9 5.6 -8.6 8.6 7.4
revTPSS 0.00 1.00 1.00 3.1 5.9 -7.6 7.6 7.6

M05-2X 0.56 n.a. n.a. 0.2 2.6 -0.5 1.4 1.4
M06-2X 0.54 n.a. n.a. -0.2 1.2 -0.7 1.2 1.1
B3LYP 0.20 0.72 0.81 -2.2 2.6 -5.1 5.1 4.5
B3PW91 0.20 0.72 0.81 -0.3 4.0 -4.7 4.7 4.0
BPW91ha 0.10 0.90 1.00 -1.6 5.4 -5.9 5.9 5.2
BPW91habc 0.15 0.75 0.35 -0.5 2.1 -4.2 4.2 4.0
BPW91habc 0.15 0.79 0.75 -0.6 3.1 -5.0 5.0 4.4
BPW91habc 0.15 0.80 0.85 -0.6 3.7 -5.2 5.2 4.6
BPW91habc 0.15 0.81 0.95 -0.6 4.3 -5.4 5.4 4.8
BPW91ha 0.15 0.85 1.00 -3.5 5.2 -5.1 5.1 4.5
PW86PBEha 0.15 0.85 1.00 -3.7 5.5 -5.4 5.4 4.9
BPW91habc 0.20 0.70 0.57 -0.6 2.1 -5.0 5.0 4.4
BPW91habc 0.20 0.72 0.77 -0.6 3.4 -4.6 4.6 3.9
BPW91ha 0.20 0.80 1.00 -5.4 6.2 -4.2 4.2 3.7
BPW91habc 0.21 0.70 0.57 -1.8 2.1 -4.3 4.3 3.7
PBE0 0.25 0.75 1.00 0.3 6.2 -4.9 4.9 4.5
PBEha 0.32 0.68 1.00 -2.8 5.3 -3.7 3.7 3.5
PBEsolha 0.50 0.50 1.00 3.2 10.0 -2.6 2.6 2.6
PBEsolha 0.60 0.40 1.00 -2.9 11.1 -0.9 1.4 1.8
TPSSh 0.10 0.90 1.00 0.6 6.1 -7.0 7.0 6.3
revTPSSha 0.10 0.90 1.00 0.1 7.8 -6.2 6.2 6.7

a The weight of exact exchange (a) and the b and c parameters
are also shown for the hybrid functionals (cf. eq 7). Note that
one-parameter hybrids have a > 0, b ) 1 - a, and c ) 1. In our
notation, ha and habc denote global hybrids with new or refitted
empirical parameters a and a, b, and c. Note also that Becke’s
original B3PW91 has a ) 0.20, b ) 0.72, and c ) 0.81. All values
are in kcal/mol. Error ) theory - experiment. The results that are
better than the B3LYP results are shown bold. The mean
experimental atomization energy for AE6 is 517.8 kcal/mol, and
the mean barrier height for BH6 is 11.7 kcal/mol.
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improved results for the energy barriers and for kinetics too.
The larger weight of the exact exchange considerably
decreases the root-mean-square errors (RMSE) for the K9
test sets, and a ) 0.6 in eq 5 leads to the excellent
performance of the PBEsol hybrid (RMSE ) 1.8 vs 12.0
kcal/mol for PBEsol). Here again the M06-2X functional
shows the best performance (a ) 0.54, RMSE ) 1.1 kcal/
mol).

The statistical results for several nonempirical or at most
three-parameter functionals are visualized in Figure 2. The
radar chart of the MAEs (kcal/mol) for the AE6 test set and
the RMSEs (kcal/mol) for the Kinetics9 (K9) test set shows
the improvements due to the hybrid functional. Notice that
B3PW91 improves the AE6 and K9 results about the same
extent but B3LYP does not. BPW91habc improves only the
AE6 results compared to B3PW91. The new PBEha (a )
0.32) results are uniformly better than those of the PBE0 (a
) 0.25). Notice that the PBEsolha functional performs poorly
for the atomization energies (MAE ) 11.1 kcal/mol).

However, after removing the errors arising from the incon-
sistencies in the energies of the free atoms and molecules,
as suggested in ref 60, we obtain MAE ) 2.6 kcal/mol.

Figure 3 shows how the errors of individual PBEsol hybrid
atomization energies for the molecules of the AE6 test set
depend on the weight of the exact exchange. Increasing the
weight of the exact exchange changes the atomization
energies in the direction of underbinding for five molecules
(see negative slopes in Figure 3), and the effect is the
strongest for C2H2O2. For SiH4 the opposite effect can be
observed: a very slight overbinding effect occurs. (See the
positive slope in Figure 3.) The figure shows that the optimal
value of a depends on the composition of the test set.
Consequently it is advisible to use larger test sets for
parameter optimizations (vide infra).

4.3. Results for the G3/99 Test Set. The results for the
enthalpies of formation ∆fH298

0 of the large G3/99 test set
(223 enthalpies of formation) will be discussed here. In this
work we apply the procedure of the G3X theory, which uses

Figure 1. Quasilinear dependence of the ME for the AE6 test set as a function of the weight of exact exchange (a) for the
BPW91 and PBE hybrids (cf. eq 5). The MAE for the AE6 test set and the RMSE for Kinetics9 (K9) test set are also shown.

Figure 2. Radar or polar chart summary of the MAE’s (kcal/mol) for the AE6 test set and the RMSEs (kcal/mol) for the Kinetics9
(K9) test set for several density functionals discussed in this paper. The connecting lines are simply for guiding the eye. Smaller
value means better performance.
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the equilibrium B3LYP/6-31G(2df, p) geometries in com-
bination with the B3LYP/6-31G(2df, p) zero-point vibration
energies and thermal corrections obtained with a frequency
scale factor of 0.9854.77 Note that the ∆fH298

0 values are
calculated from the negatives of the ∑De values, atomic
enthalpies, and thermal corrections; see eq 1 of ref 60. Thus
a more negative ME of the calculated ∆fH298

0 values means
a change in the overbinding direction. The results in Table
2 show that BLYP underbinds (ME ) 3.81 kcal/mol) in the
same way as for the AE6 test set. Thus the overbinding
experienced for the G2-32 test set is seemingly accidental,
due to the nonrepresentativity of the latter test set. The other
GGAs overbind the same way as for the AE6 test set (cf.
ME ) -5.6 kcal/mol for BPW91 or ME ) -21.69 kcal/
mol for PBE in Table 2). Here we include the combination
of the PW86 exchange and the PBE correlation functional,
since this functional is free of almost all the attractive
dispersion forces for noble gas dimers, and thus it is
particularly suitable for an additive dispersion correction.78

We also include TPSS and revTPSS functionals that perform
particularly well for thermochemistry even without the
inclusion of the exact exchange. We shall present here the
first hybrid constructed from revTPSS, the revTPSSha.45

Inspection of Table 2 shows that many of the new hybrid
functionals perform considerably better than B3LYP or
B3PW91 (cf. Table 2). The best performer is the BPW91habc

with a ) 0.20, b ) 0.70, and c ) 0.57 (MAE ) 3.1 kcal/
mol). This result is better than the best results published in
ref 45 for VSXC (MAE ) 3.5 kcal/mol), but M06-2X
remains the best performer with MAE ) 2.6 kcal/mol (cf.
Table 2). The BPW91habc with a ) 0.21, b ) 0.70, and c )
0.57 (MAE ) 3.3 kcal/mol) and with a ) 0.15, b ) 0.75,
and c ) 0.35 (MAE ) 4.3 kcal/mol) performs worse. The
next best performers are TPSSh and revTPSSha with a )
0.10 (eq 5) (MAE ) 3.9 and 4.3 kcal/mol, respectively).
Table 2 also shows that the new PBEha with a ) 0.32 (eq
5) performs better than B3LYP (MAE ) 4.7 vs 4.9 kcal/

mol) or PBE037,38 with a ) 0.25 in eq 5 (MAE ) 6.7 kcal/
mol). The revTPSS functional performs slightly better than
TPSS (MAE ) 5.1 vs 5.8 kcal/mol).

Comparison of the results obtained for the G3/99 and AE6
test sets shows that AE6 is suitable for rough parameter
optimization; however, optimization on it does not yield
precisely the optimal parameters for the G3/99 test set. For
example we observed a considerable difference for the
PBEsol hybrid. Optimization for the AE6 test gives a ) 0.5
(cf. ref 79 and Table 1), while our current results for G3/99
test set give a ) 0.6 (cf. Table 2). Also the BPW91habc,
TPSSh, and revTPSSha functionals perform differently on
the two test sets.

4.4. Basis Set Effects. Our results show that simplification
of the 6-311++G(3df, 3pd) to the 6-311+G(3df, 3pd) basis
set leads to a slight overbinding that is proportional to the
number of the H atoms in the molecule (cf. Table 2). The
origin of this difference is simply the less negative H atom
energy calculated with the + basis set compared to the
diffuse ++ basis set. The molecular energies practically do
not change. To demonstrate this, we have performed PBEh
calculations with the 6-311++G(3df, 3pd) basis set and with
a new basis set defined here (cf. Table 2). In the new
6-311+′G(3df, 3pd) basis set, the H atom is calculated with
the 6-311++G(3df, 3pd) basis set, and all the molecules are
calculated with the 6-311+G(3df, 3pd) basis set. The results
agree very well as shown in Table 2. Comparison of the
PBEh/6-311++G(3df, 3pd) and PBEh/6-311+G(3df, 3pd)
results shows the slight relative overbinding of the latter
smaller basis set (cf. ME ) -1.51 and -1.74 kcal/mol and
the -27.7 to -28.2 kcal/mol error for naphthalene in Table
2). Note that the difference is proportional to the number of
H atoms. The smaller + basis set is considerably less
expensive than the ++ basis set for H atom containing
molecules, so for extensive comparisons the use of the
smaller basis set is advantageous in computer time, without
altering the conclusions.

Figure 3. Quasilinear dependence of the errors of the atomization energies of the components of the AE6 test set as functions
of the weight of exact exchange (a) for the PBEsol hybrid (cf. eq 5).
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Further simplification of the 6-311+G(3df,3pd) basis sets
by removing polarization functions leaves the atomic energies
practically unchanged (especially for spherical atoms such
as Li, Be, and N) but makes the molecular energies less
negative and leads to an underbinding effect. Comparison
of the BPW91/6-311+G(3df, 3pd) and BPW91/6-311+G(2df,
p) results in Table 2 clearly shows this tendency. The general
overbinding of BPW91 is partly compensated by the un-
derbinding effect of the 6-311+G(2df, p) basis set compared
to the 6-311+G(3df, 3pd) basis set (cf. ME ) -5.6 vs -2.9
kcal/mol in Table 2). Even the MAE is slightly improved.
Similar improvement can be observed for revTPSS/cc-pVTZ
results in Table 2, in agreement with the observation that
TPSS/6-311G(d, p) results60 agree better with the experiment
than the TPSS/6-311++G(3df, 3pd) results published in ref
45. Our results for the AE6 test set show that the PBE/cc-
pVQZ and PBE/6-311+G(3df, 3pd) atomization energies are
similar: The difference of the MAEs is less than 0.4 kcal/
mol.

4.5. About the Origin of the Improvements. Table 3
shows the atoms and the molecules of the AE6 test set, the
best estimates of the relevant total energies, the relative
percentage errors (calculated/best estimate - 1) 100%, the
mean percent errors (MPE%), and the mean absolute percent
errors (MAPE%) of the calculated PBEsol/6-311+G(3df,
3pd) total energies as functions of the weight of the exact

exchange, a, of eq 5. The best estimated energies for the
molecules of the AE6 test are derived from the known atomic
energies80 and the reference atomization energies. The results
in Table 3 show that the PBEsol functional (a ) 0.0) gives

Table 2. Summary of Deviations (ME, MAE) from Experiment of Standard Enthalpies of Formation, ∆fH298
0 , for the 223

Compounds of the G3/99 Test Set Computed with Various Methods Using Various Basis Setsa

functional basis a b c ME MAE max (+) min (-) ref

BLYP 6-311++G(3df, 3pd) 0.00 1.00 1.00 3.81 9.49 41.0 (n-octane) -28.1 (NO2) 45
BPW91 6-311+G(3df, 3pd) 0.00 1.00 1.00 -5.58 9.03 21.4 (Si(CH3)4) -32.4 (NO2) this work
BPW91 6-311+G(2df, d) 0.00 1.00 1.00 -2.85 8.60 26.3 (Si(CH3)4) -31.0 (NO2) this work
PW86PBE 6-311+G(3df, 3pd) 0.00 1.00 1.00 -5.60 9.76 24.2 (Si(CH3)4) -36.1 (NO2) this work
PBE 6-311++G(3df, 3pd) 0.00 1.00 1.00 -21.69 22.22 8.7 (SiH4) -79.7 (azulene) 45
TPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 -5.20 5.81 16.2 (SiF4) -22.90 (ClF3) 45
revTPSS 6-311+G(3df, 3pd) 0.00 1.00 1.00 -4.04 5.09 16.4 (SiF4) -25.70 (ClF3) this work
revTPSS cc-pVTZ 0.00 1.00 1.00 -1.72 4.54 21.5 (SiF4) -22.90 (ClF3) this work

M06-2Xb 6-311+G(3df, 3pd) 0.54 n.a. n.a. -1.33 2.63 15.6 (O3) -17.9 (P4) this work
B3LYP 6-311++G(3df, 3pd) 0.20 0.72 0.81 3.51 4.93 20.8 (SF6) -8.1 (BeH) 45
B3PW91 6-311++G(3df, 3pd) 0.20 0.72 0.81 -1.80 3.90 21.6 (SiF4) -17.0 (naphtalene) 45
BPW91habc 6-311+G(3df, 3pd) 0.15 0.75 0.35 1.57 4.29 26.9 (SF6) -9.3 (BeH) this work
BPW91habc 6-311+G(3df, 3pd) 0.15 0.79 0.75 -0.70 3.81 22.4 (SiF4) -12.8 (pyrimidine) this work
BPW91ha 6-311+G(3df, 3pd) 0.15 0.85 1.00 2.59 5.37 24.7 (SiF4) -12.5 (F2CdCF2) this work
PW86PBEha 6-311+G(3df, 3pd) 0.15 0.85 1.00 2.50 6.19 27.8 (SiF4) -16.9 (C4H4N2) this work
BPW91habc 6-311+G(3df, 3pd) 0.20 0.70 0.57 -0.04 3.11 23.7 (SiF4) -8.4 (BeH) this work
BPW91habc 6-311+G(3df, 3pd) 0.21 0.70 0.57 1.84 3.32 25.3 (SiF4) -8.4 (BeH) this work
PBE0 6-311++G(3df, 3pd) 0.25 0.75 1.00 -4.73 6.66 21.3 (SiF4) -35.6 (naphtalene) 45
PBEha 6-311++G(3df, 3pd) 0.30 0.70 1.00 -1.51 4.89 24.3 (SiF4) -27.7 (naphtalene) this work
PBEha 6-311+‘G(3df, 3pd) 0.30 0.70 1.00 -1.49 4.89 24.3 (SiF4) -27.7 (naphtalene) this work
PBEha 6-311+G(3df, 3pd) 0.30 0.70 1.00 -1.74 5.02 24.3 (SiF4) -28.2 (naphtalene) this work
PBEha 6-311+G(2df, d) 0.30 0.70 1.00 0.84 4.91 29.8 (SiF4) -24.7 (naphtalene) this work
PBEha 6-311++G(3df, 3pd) 0.32 0.68 1.00 -0.23 4.73 25.5 (SiF4) -24.6 (naphtalene) this work
PBEsolha 6-311+G(3df, 3pd) 0.20 0.80 1.00 -38.98 39.07 3.9 (Li2) -128.2 (naphtalene) this work
PBEsolha 6-311+G(3df, 3pd) 0.25 0.75 1.00 -34.07 34.21 4.1 (Li2) -115.3 (naphtalene) this work
PBEsolha 6-311+G(3df, 3pd) 0.50 0.50 1.00 -10.39 15.06 37.5 (O3) -56.2 (n-octane) this work
PBEsolha 6-311+G(3df, 3pd) 0.60 0.40 1.00 -1.30 11.98 56.3 (O3) -41.1 (n-octane) this work
TPSSh 6-311+G(3df, 3pd) 0.10 0.90 1.00 -0.86 3.90 22.0 (SiF4) -18.00 (Si2H6) 45
revTPSSha 6-311+G(3df, 3pd) 0.10 0.90 1.00 -0.06 4.32 22.2 (SiF4) -25.00 (ClF3) this work
revTPSSha 6-311++G(3df, 3pd) 0.20 0.80 1.00 3.91 6.60 27.7 (SiF4) -24.80 (Si2H6) this work

a The geometries and zero-point energies were obtained at the B3LYP/6-31G(2df, p) level using a frequency scale factor of 0.9854. See
also the footnote of Table 1. All values are in kcal/mol. Error ) theory - experiment. 6-311+′G(3df, 3pd) basis set: all calculations were
performed with 6-311+G(3df, 3pd), but the free H atom energy was calculated with the 6-311++G(3df, 3pd) basis set. b It was not possible
to obtain self-consistent energy for Li atom. We calculated the energy using the PBE electron density. Less serious SCF convergence
problems were observed for Na and several other atoms.

Table 3. Relative Percentage Errors, MPE, and MAPE of
Calculated PBEsol and PBEsolha/6-311+G(3df, 3pd) Total
Energies Compared to Best Estimates of Nonrelativistic
Total Energies vs Weight of the Exact Exchange, a, of Eq
5 for Atoms and Molecules Included in AE6 Test Seta

a (cf. eq 5)

species
best energy

hartree 0.00 0.25 0.40 0.50 0.60

H -0.5000 -2.33 -1.38 -0.80 -0.42 -0.03
C -37.8450 -0.59 -0.43 -0.34 -0.27 -0.21
O -75.0674 -0.42 -0.31 -0.25 -0.20 -0.15
Si -289.3600 -0.23 -0.17 -0.13 -0.11 -0.08
S -398.1110 -0.20 -0.15 -0.12 -0.09 -0.07
SiH4 -291.8738 -0.25 -0.18 -0.13 -0.11 -0.08
SiO -364.7335 -0.27 -0.20 -0.16 -0.13 -0.11
S2 -796.3840 -0.20 -0.15 -0.11 -0.09 -0.07
C3H4 -116.6582 -0.55 -0.41 -0.32 -0.26 -0.20
C2H2O2 -227.8341 -0.44 -0.33 -0.27 -0.23 -0.18
C4H8 -157.2111 -0.55 -0.40 -0.31 -0.24 -0.18

MPE% -0.55 -0.37 -0.27 -0.20 -0.12
MAPE% 0.55 0.37 0.27 0.20 0.12

a Nonrelativistic total energies are calculated from atomic
energies in ref 80 and atomization energies in ref 70.
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about -2.3% error for the H atom and -0.6% and -0.4%
for the C and O atoms, respectively. It can be observed that
relative percentage errors decrease with the increase of the
atomic number (cf. -0.2% error for S atom). For molecules,
the errors of the constituent atoms dominate in the error (cf.
-0.2% error for S2 molecule). Increasing the weight of the
exact exchange consistently improves the performance of
PBEsol for the total energies for the atoms and the molecules
in the AE6 test set. The inclusion of exact exchange improves
the PBEsol hybrid results for the right reason by improving
the individual energies. We show the individual errors
(calculated - best estimate) in the Supporting Information.

In Table 4 we present the same error analysis for the PBE,
PBEha, PW86PBE, BPW91, BPW91ha, B3PW91, and B3LYP
functionals with the 6-311+G(3df, 3pd) basis set. The PBE
energies are quite good and consistently more positive than
the best-estimate energies (MPE% ) -0.08%). Inclusion of
exact exchange improves the MPE% via error compensation
for PBEha. (The H atom energy is too negative by 0.9 kcal/
mol or about 0.29% percent error, and all the other energies
are too positive, cf. Supporting Information). But inclusion
of exact exchange does not improve the MAPE%. The
individual PBEha errors do decrease compared to the PBE
errors (cf. Supporting Information). A similar but larger (up
to 3 kcal/mol, cf. Supporting Information) error occurs for
the H atoms for all the other functionals shown in Table 4.
Notice that PW86PBE, BPW91ha, or B3PW91 give worse
results than BPW91. B3LYP energies are all too negative,
and B3LYP gives the smallest MPE% and MAPE%.

5. Ionization Potentials

Table 5 presents the ME and MAE for ionization potentials
(IP) of the IP8645 test set. IPs were calculated as the
difference in total energies at 0 K of the cation and the
corresponding neutral, at their corresponding B3LYP/6-
31G(2df, p) geometries using scaled B3LYP/6-31G(2df, p)
ZPEs. Calculations use the 6-311++G(3df, 3pd) and
6-311+G(2df, p) basis sets. The results show that these basis

sets are practically equivalent for these calculations. Our
results agree with the results in ref 45.

The best MAEs are slightly below 0.2 eV. The order of
performance is B3LYP, PBEsolh, and BPW91h, with almost
negligible differences between the functionals (set bold in
Table 5). Generally a small underestimation (ME ) -0.1,
-0.2 eV) of IPs can be observed for nonhybrid functionals,
and this underestimation is reduced by the inclusion of the
exact exchange. PBEsol with a ) 0.6 slightly overestimates
the IPs (ME ) 0.036 eV in Table 5). The ME shows again
a quasilinear dependence on the value of a in eq 5. In general
the hybrid functionals perform better than their nonhybrid
counterparts, in agreement with ref 45.

The poorest ionization energy is predicted for the CN
molecule because the open-shell 1Σ+ singlet state of the CN+

ion is not correctly described by the functionals used in this
study.66 The incorrect B3LYP geometries of the CH4

+,
BCl3

+, B2F4
+, and BF3

+ cations81 also lead to large errors.
(See the large deviations for BF3

+ in Table 5.)

6. Electron Affinities

Anions are difficult test cases for the GGA, meta-GGA, and
global hybrid functionals, as the self-interaction error can
spoil the results. The results are also sensitive to the basis-
set, which must be diffuse enough to describe anions but
not more diffuse than that. We have calculated the electron
affinity (EA) at 0 K as the difference between the total
energies of the anion and the corresponding neutral species.
We use the B3LYP/6-31G(2df, p) geometries.

Semilocal functionals lead to unstable negative atomic ions
in the complete basis set limit, in which a fraction of an
electron escapes. Nevertheless, realistic electron affinities can
be computed using Gaussian basis sets in which the diffuse
basis functions do not have characteristic decay lengths larger
than those of the exact Kohn-Sham orbitals. In most cases,
there is a plateau on which the electron affinity remains stable
as the basis set is expanded within this range.82

Table 4. Relative Percentage Errors, MPE, and MAPE of the Calculated 6-311+G(3df, 3pd) Total Energies Compared to
Best Estimates of Nonrelativistic Total Energies vs Weight of Exact Exchange, a, of Eq 5 for Atoms and Molecules Included
in AE6 Test Seta

PBE PBE0 PBEha PW86PBE BPW91 BPW91ha B3PW91 B3LYP

species best energy hartree a ) 0 a ) 0.25 a ) 0.32 a ) 0 a ) 0 a ) 0.2 a ) 0.2 a ) 0.2

H -0.5000 -0.076 0.208 0.290 1.040 0.785 0.869 0.796 0.431
C -37.8450 -0.135 -0.110 -0.103 0.076 -0.003 -0.001 -0.025 0.033
O -75.0674 -0.084 -0.073 -0.069 0.073 0.014 0.010 -0.010 0.031
Si -289.3600 -0.047 -0.038 -0.035 0.032 0.007 0.007 -0.007 0.012
S -398.1110 -0.043 -0.034 -0.032 0.023 0.004 0.004 -0.008 0.006
SiH4 -291.8590 -0.046 -0.035 -0.031 0.037 0.012 0.013 0.002 0.021
SiO -364.7391 -0.054 -0.051 -0.049 0.039 0.007 0.001 -0.012 0.012
S2 -796.4029 -0.043 -0.036 -0.033 0.022 0.004 0.003 -0.009 0.004
C3H4 -116.6851 -0.133 -0.122 -0.119 0.076 -0.007 -0.016 -0.031 0.014
C2H2O2 -227.8833 -0.099 -0.102 -0.102 0.069 0.002 -0.014 -0.031 0.012
C4H8 -157.2426 -0.132 -0.112 -0.106 0.076 -0.004 -0.006 -0.020 0.017

MPE% -0.081 -0.046 -0.035 0.142 0.075 0.079 0.059 0.054
MAPE% 0.081 0.084 0.088 0.142 0.077 0.086 0.087 0.054

a Nonrelativistic total energies are calculated from atomic energies in ref 80 and atomization energies in ref 70. Here B3PW91 and
B3LYP are the original parametrizations of refs 32 and 56, respectively.
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Table 6 presents the ME and MAE for electron affinities
of the G3/99 test set (58 species, the EA58 test set is taken
from ref 45). The open-shell singlet C2 is isoelectronic with
CN+, and here again this electron structure causes a problem
for single determinant GGAs, leading to extremely large
errors in agreement with ref 45. The BPW91 results in the
Table 6 show that the 6-311++G(3df, 3pd), 6-311+G(3df,
3pd), and 6-311+G(2df, p) basis sets are practically equiva-
lent. The errors of the functionals are considerably larger

than these basis set errors. Our study (not presented here)
shows that omitting diffuse functions makes the errors very
large.

The results in Table 6 show good agreement with the
results in ref 45. GGAs slightly overbind the extra electron.
The TPSS meta-GGA, however, shows a slight underbinding
of the electron, and this is somewhat more pronounced for
revTPSS. The BLYP and the PBEsol functionals show the
best performance (MAE ) 0.11 eV).

Table 5. Summary of Deviations from Experiment of IPs of the G3/99 Test Set (86 species) Computed Using the
6-311++G(3df, 3pd) Basis Seta

method basis a b c ME MAE max (+) max (-)

BLYP 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.191 0.286 1.03 (CN) -1.06 (BF3)
BPW91 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.105 0.241 1.14 (CN) -0.99 (BF3)
BPW91 6-311+G(2df, p) 0.00 1.00 1.00 -0.105 0.238 1.15 (CN) -0.96 (BF3)
PBE 6-311+G(2df, p) 0.00 1.00 1.00 -0.105 0.233 1.12 (CN) -0.98 (BF3)
PBEsol 6-311+G(2df, p) 0.00 1.00 1.00 -0.146 0.237 1.06 (CN) -0.96 (BF3)
TPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.134 0.242 1.22 (CN) -1.02 (BF3)
revTPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.156 0.247 1.20 (CN) -1.07 (BF3)

B3LYP 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.009 0.184 1.57 (CN) -0.57 (B2F4)
B3PW91 6-311++G(3df, 3pd) 0.20 0.72 0.81 -0.012 0.190 1.58 (CN) -0.65 (B2F4)
BPW91ha 6-311+G(2df, p) 0.10 0.90 1.00 -0.084 0.218 1.35 (CN) -0.77 (B2F4)
BPW91ha 6-311+G(2df, p) 0.15 0.85 1.00 -0.074 0.210 1.45 (CN) -0.72 (B2F4)
BPW91ha 6-311+G(2df, p) 0.20 0.80 1.00 -0.064 0.204 1.55 (CN) -0.67 (B2F4)
BPW91habc 6-311+G(2df, p) 0.20 0.70 0.57 0.079 0.188 1.67 (CN) -0.51 (B2F4)
PBE0 6-311++G(3df, 3pd) 0.25 0.75 1.00 -0.064 0.199 1.61 (CN) -0.67 (B2F4)
PBE0 6-311+G(2df, p) 0.25 0.75 1.00 -0.062 0.198 1.62 (CN) -0.63 (B2F4)
PBEha 6-311+G(2df, p) 0.32 0.68 1.00 -0.051 0.196 1.76 (CN) -0.57 (B2F4)
PBEsolha 6-311+G(2df, p) 0.25 0.75 1.00 -0.064 0.186 1.60 (CN) -0.61 (B2F4)
PBEsolha 6-311+G(2df, p) 0.60 0.40 1.00 0.036 0.198 2.37 (CN) -0.35 (Be)
TPSSh 6-311++G(3df, 3pd) 0.10 0.90 1.00 -0.113 0.229 1.41 (CN) -0.79 (BF3)
revTPSSha 6-311++G(3df, 3pd) 0.10 0.90 1.00 -0.129 0.230 1.40 (CN) -0.80 (BF3)
revTPSSha 6-311++G(3df, 3pd) 0.20 0.80 1.00 -0.102 0.219 1.59 (CN) -0.62 (B2F4)

a The geometries and zero-point energies were obtained at the B3LYP/6-31G(2df, p) level using a frequency scale factor of 0.9854. All
values are in eV. Error ) calculated - experiment. The mean experimental IP is 10.89 eV. See also the footnote of Table 1. The best
results (MAE < 0.2 eV) are in bold.

Table 6. Summary of Deviations from Experiment of EAs of the G3/99 Test Seta

method basis a b c ME MAE max min

BLYP 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.008 0.115 0.70 (C2) -0.26 (NCO)
BPW91 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.035 0.119 0.78 (C2) -0.31 (NO2)
BPW91 6-311+G(3df, 3pd) 0.00 1.00 1.00 0.030 0.122 0.78 (C2) -0.31 (NO2)
BPW91 6-311+G(2df, p) 0.00 1.00 1.00 0.032 0.125 0.78 (C2) -0.29 (NO2)
PBE 6-311+G(2df, p) 0.00 1.00 1.00 0.057 0.121 0.78 (C2) -0.28 (NO2)
PBEsol 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.039 0.113 0.74 (C2) -0.36 (NO2)
TPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.020 0.137 0.82 (C2) -0.32 (NO2)
revTPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.041 0.137 0.82 (C2) -0.33 (NO2)

B3LYP 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.088 0.124 1.10 (C2) -0.09 (HOO)
B3PW91 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.031 0.137 1.08 (C2) -0.26 (HOO)
BPW91ha 6-311+G(2df, p) 0.10 0.90 1.00 0.002 0.138 0.91 (C2) -0.28 (HOO)
BPW91ha 6-311+G(2df, p) 0.15 0.85 1.00 -0.012 0.152 0.98 (C2) -0.3 (HOO)
BPW91ha 6-311+G(2df, p) 0.20 0.80 1.00 -0.026 0.168 1.04 (C2) -0.33 (HOO)
BPW91habc 6-311+G(2df, p) 0.20 0.70 0.57 0.115 0.147 1.16 (C2) -0.13 (HOO)
PBE0 6-311+G(2df, p) 0.25 0.75 1.00 -0.028 0.172 1.10 (C2) -0.38 (HOO)
PBEha 6-311+G(2df, p) 0.32 0.68 1.00 -0.050 0.197 1.18 (C2) -0.42 (HOO)
PBEsolha 6-311+G(2df, p) 0.25 0.75 1.00 -0.016 0.150 1.10 (C2) -0.40 (HOO)
PBEsolha 6-311+G(2df, p) 0.60 0.40 1.00 -0.072 0.262 1.58 (C2) -0.61 (OH)
TPSSh 6-311++G(3df, 3pd) 0.10 0.90 1.00 -0.046 0.164 0.95 (C2) -0.33 (HOO)
revTPSSha 6-311++G(3df, 3pd) 0.10 0.90 1.00 -0.084 0.188 0.70 (C2) -0.41 (OH)
revTPSSha 6-311++G(3df, 3pd) 0.20 0.80 1.00 -0.061 0.170 0.95 (C2) -0.36 (HOO)

a The G3/99 has 58 species. Geometries and zero-point energies were obtained at the B3LYP/6-31G(2df, p) level using a frequency
scale factor of 0.9854. All values are in eV. Error ) theory - experiment. The mean experimental EA is 1.41 eV. See also the footnote of
Table 1.
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Mixing exact exchange with the GGA or meta-GGA
functionals shifts the ME to the electron-underbinding
direction, and again we observed a quasilinear relationship
between the value of a in eq 5 and the ME for BPW91ha,
PBEha, and PBEsolha. The example of BPW91ha shows that
even a ) 0.1 counterbalances the overbinding, but this does
not improve the MAE value (cf. Table 6). This shows that
for EA the inclusion of exact exchange deteriorates the
results. The largest deterioration can be observed for func-
tionals that underbind at the semilocal level (like TPSS or
revTPSS) or for hybrids functionals with a large weight of
exact exchange (cf. PBEsolha in Table 6). This clearly shows
a weakness of the global hybrids.

7. Proton Affinities

The proton affinity (PA) is calculated as the energy difference
between the neutral and the protonated molecule M: PA(M)
) E0(M) - E0(MH+). Adding a proton to a neutral molecule
does not change the number of the electrons but alters the
geometry and the distribution of the electron density. This
usually leads to a more negative exchange and correlation
energy.

We selected the eight PAs included in the G3/99 test set
as published in ref 45 (the PA8 test set). We used the
geometries and the scaled frequencies obtained at the
B3LYP/6-31G(2df, p) level. Earlier results show that
the LSDA seriously underbinds (ME ) -5.9 kcal/mol), while
the Hartree-Fock method slightly overbinds (ME ) 1.8 kcal/
mol), and these model chemistries give a poor MAE for the
PA8 test set (MAE ) 5.9 and 3.1 kcal/mol, respectively).

Table 6 presents the ME and MAE in proton affinities of
the PA8 test set as in ref 45. Calculations use the
6-311++G(3df, 3pd), 6-311+G(3df, 3pd) and 6-311+G(2df,
p) basis sets. The results show that the 6-311+G(2df, p) basis
set error is large for the PA8 test set (cf. Table 7 BPW91
results), and thus we use only the 6-311+G(3df, 3pd) and

6-311++G(3df, 3pd) basis sets. The GGA functionals
qualitatively differ from each other. The order of the GGA
functionals from the most underbinding to the overbinding
direction is PBEsol (closest to LSDA), BLYP, PBE, BPW91,
TPSS, and revTPSS (ME ) -2.7, -1.5, -0.8, +0.9, 1.7,
and 1.8 kcal/mol, respectively, cf. Table 7). The hybrid
functionals describe more correctly the protonation of PA8
and decrease the MAE from 1.5 to around 1 kcal/mol. The
largest positive error was observed for C2H2 for all functionals.

As the BPW91 GGA overbinding is further aggravated
by the overbinding effect of the exact exchange mixing,
BPW91ha does not give good results (cf. Table 7). However,
the reduced gradient contributions of exchange and correla-
tion lead to some improvement [cf. MAE ) 1.07 and 1.33
kcal/mol for B3PW91 and BPW91habc (a ) 0.2, b ) 0.8,
and c ) 1.0) in Table 7]. This improvement is conserved in
B3LYP results too (MAE ) 1.16 kcal/mol). The underbind-
ing of PBE is efficiently compensated by a ) 0.32, and this
hybrid is among the best functionals with MAE ) 1.10 kcal/
mol (cf. Table 7). The large proportion of exact exchange
in PBEsolha compensates the strong underbinding of PBEsol,
but the MAE remains large (1.7-2.0 kcal/mol, Table 7). The
TPSSh and revTPSSha results conserve the overbinding
errors of the parent functionals, that is slightly aggravated
by the small portion of exact exchange (a ) 0.1).

8. Bond Lengths and Visual Summary

Table 8 presents the ME and the MAE for equilibrium
internuclear distances (re) of the T-96R test set as defined in
ref 45. The geometry optimizations were carried out using
the 6-311++G(3df, 3pd), 6-311G(2df, p), cc-pVTZ, and aug-
cc-pVTZ basis sets with Opt ) Tight and Int(Grid )
Ultrafine) keywords. Comparison of the basis set dependence
of the geometries shows that the 6-311G(2df, p) basis set
gives similar, but slightly longer (by 0.010 Å), re values than
the 6-311++G(3df, 3pd) basis set. This small deviation

Table 7. Summary of Deviations from Experiment of PAs for the Eight Molecules of the G3/99 Test Seta

method basis a b c ME MAE max (+) min (-)

BLYP 6-311++G(3df, 3pd) 0.00 1.00 1.00 -1.46 1.57 0.4 (C2H2) -3.9 (H2O)
BPW91 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.86 1.45 3.8 (C2H2) -1.3 (PH3)
BPW91 6-311+G(3df, 3pd) 0.00 1.00 1.00 0.86 1.47 3.8 (C2H2) -1.3 (PH3)
BPW91 6-311+G(2df, p) 0.00 1.00 1.00 0.68 1.27 3.4 (C2H2) -1.4 (PH3)
PBE 6-311++G(3df, 3pd) 0.00 1.00 1.00 -0.82 1.60 2.4 (C2H2) -3.6 (PH3)
PBEsol 6-311++G(3df, 3pd) 0.00 1.00 1.00 -2.69 2.88 0.7 (C2H2) -6.8 (PH3)
TPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 1.68 1.82 4.4 (C2H2) -0.5 (H2O)
revTPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 1.77 2.06 4.8 (C2H2) -1.2 (H2O)

B3LYP 6-311++G(3df, 3pd) 0.20 0.72 0.81 -0.77 1.16 1.6 (C2H2) -2.3 (H2)
B3PW91 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.97 1.07 4.2 (C2H2) -0.3 (SiH4)
BPW91ha 6-311+G(3df, 3pd) 0.10 0.90 1.00 1.08 1.32 4.3 (C2H2) -0.5 (PH3)
BPW91ha 6-311+G(3df, 3pd) 0.15 0.85 1.00 1.20 1.26 4.5 (C2H2) -0.1 (PH3)
BPW91ha 6-311+G(3df, 3pd) 0.20 0.80 1.00 1.31 1.33 4.7 (C2H2) -0.1 (SiH4)
BPW91habc 6-311+G(3df, 3pd) 0.20 0.70 0.57 1.22 1.27 4.1 (C2H2) -0.1 (H2O)
PBE0 6-311+G(3df, 3pd) 0.25 0.75 1.00 0.18 1.14 3.9 (C2H2) -1.7 (SiH4)
PBEha 6-311+G(3df, 3pd) 0.32 0.68 1.00 0.46 1.10 4.3 (C2H2) -1.8 (SiH4)
PBEsolha 6-311++G(3df, 3pd) 0.25 0.75 1.00 -1.25 1.88 2.5 (C2H2) -4.2 (SiH4)
PBEsolha 6-311++G(3df, 3pd) 0.50 0.50 1.00 0.22 1.66 4.4 (C2H2) -3.7 (SiH4)
PBEsolha 6-311++G(3df, 3pd) 0.60 0.40 1.00 0.82 2.04 5.1 (C2H2) -3.5 (SiH4)
TPSSh 6-311++G(3df, 3pd) 0.10 0.90 1.00 1.77 1.77 4.8 (C2H2)
revTPSSha 6-311++G(3df, 3pd) 0.10 0.90 1.00 1.84 1.99 5.2 (C2H2) -0.6 (H2O)

a The geometries and zero-point energies were obtained at the B3LYP/6-31G(2df, p) level using a frequency scale factor of 0.9854. All
values are in kcal/mol. Error ) theory - experiment. The mean experimental PA is 158.0 kcal/mol. See also the footnote of Table 1.
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usually does not influence the total energies as the energy
surfaces around the equilibria are flat. This is in agreement
with the earlier observation that the 6-31G(2df, p) basis set
gives reasonable geometries.77 This is a useful observation
to speed up considerably the calculations, as geometry
optimizations with large diffuse basis sets are very slow and
time consuming. The cc-pVTZ and aug-cc-pVTZ basis sets
both give consistently longer (by 0.04 Å) re values than the
6-311++G(3df, 3pd) basis set as shown for TPSS (cf. Table
8). We have observed a similar 0.05 Å basis set effect for
the average bond lengths calculated with the PBEsolha

functional (not shown in Table 8). This discrepancy shows
that even large, polarized, and diffuse triple-� basis sets might
introduce a considerable systematic error into the calculated
equilibrium bond lengths.

It was observed for the T-96R test set that LSDA gives
particularly good re values, and the Hartree-Fock method
systematically underestimates the values of re (ME ) -0.01
Å in Table 6 of ref 45, Be2 excluded). We identified several
problematic compounds in the T-96R: Be2, Li2, and Na2. Be2

has a large equilibrium distance and a very flat potential
energy curve and is bound by a longer range dispersion
interaction that is not described well by GGA or meta-GGA.
Be2 is unbound by the Hartree-Fock method. Although
TPSS, PBE, and PBEsol bind Be2,83 inclusion of exact
exchange makes re very large and leads to errors up to 0.231
Å (see PBEsolh (a ) 0.6) in Table 8). We note that inclusion
of the a posteriori dispersion correction at no cost consider-
ably improves such results without deteriorating the covalent
results.84 Li2 is problematic with all the functionals (too long
re), but Na2 is considerably better described with the hybrid
functionals. The GGA and the hybrid results are spoiled by
the self-interaction error for F2

+. These results show that
the weakly bound molecules are not described well with the
functionals in this study.

While LSDA error compensation gives a reasonable
prediction for the re values of the T-96R test set, the

introduction of gradient correction (GGA and meta-GGA)
gives too long re values, and that is efficiently compensated
by the exact exchange. Again a quasilinear dependence of
the ME on the value of exact exchange mixing (a in eq 5)
was observed for BPW91ha, PBEha, and PBEsolha function-
als. Notice that the ME value for BPW91habc depends mainly
on the value of a and shows much less dependence on b
and c parameters of eq 7 (cf. Table 8). The best functionals
are revTPSSha, B3PW91, TPSSh, PBEha, BPW91ha, and
B3LYP. All these functionals show MAEs about 0.01 Å in
Table 8.

Visual Summary over the Test Sets. The summary of
the statistics is visualized in Figure 4. The radar chart of
the relative MAEs (kcal/mol) compared to B3LYP MAE
for K9, G3/99, IP86, EA58, PA8, and T96R test sets
shows, for example, that B3PW91 performs better or the
same as B3LYP except for the EA58 test set, where hybrid
functionals fail in general compared to the parent GGA.
(Notice the better performance of BPW91 on the figure.)

9. Conclusions

Our formal discussion in Sections 1and 2 presented an
explanation and a critique of the concept of global hybrid
functionals.

Our numerical studies have introduced global hybrids
starting from the previously unhybridized semilocal func-
tionals PBEsol and revTPSS. Interestingly, PSEsol requires
a large fraction (60%) of exact exchange to correct its strong
overestimation of molecular atomization energies, and its
hybrid then predicts accurate energy barriers and improved
but still inaccurate atomization energies. But revTPSS
requires only a small fraction (10%) of exact exchange to
correct its slight overestimation of atomization energies, so
its hybridization only slightly improves its strong underes-
timation of barriers.

Table 8. Summary of Deviations from Experiment of Equilibrium Bond Lengths (re) for the T96R Test Seta

method basis a b c ME MAE max (+) max (-)

BLYP 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.0212 0.0223 0.055 (Al2) -0.032 (Na2)
BPW91 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.0166 0.0168 0.070 (Li2) -0.007 (F2

+)
BPW91 6-311G(2df, p) 0.00 1.00 1.00 0.0178 0.0180 0.066 (Li2) -0.005 (F2

+)
PBE 6-311G(2df, p) 0.00 1.00 1.00 0.0164 0.0170 0.052 (Li2) -0.008 (F2

+)
PBEsol 6-311++G(3df,3pd) 0.00 1.00 1.00 0.0104 0.0127 0.067 (Li2) -0.021 (F2

+)
TPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.0138 0.0142 0.078 (Li2) -0.008 (P4)
TPSS cc-pVTZ 0.00 1.00 1.00 0.0176 0.0180 0.062 (Li2) -0.013 (Be2)
TPSS aug-cc-pVTZ 0.00 1.00 1.00 0.0178 0.0182 0.062 (Li2) -0.014 (Be2)
revTPSS 6-311++G(3df, 3pd) 0.00 1.00 1.00 0.0137 0.0141 0.081 (Li2) -0.010 (F2

+)

B3LYP 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.0050 0.0104 0.041 (Be2) -0.040 (Na2)
B3PW91 6-311++G(3df, 3pd) 0.20 0.72 0.81 0.0026 0.0093 0.060 (Li2) -0.042 (F2

+)
BPW91ha 6-311G(2df, p) 0.10 0.90 1.00 0.0108 0.0127 0.064 (Li2) -0.024 (F2

+)
BPW91ha 6-311G(2df, p) 0.15 0.85 1.00 0.0076 0.0112 0.063 (Li2) -0.033 (F2

+)
BPW91ha 6-311G(2df, p) 0.20 0.80 1.00 0.0045 0.0102 0.065 (Be2) -0.041 (F2

+)
BPW91habc 6-311G(2df, p) 0.20 0.70 0.57 0.0047 0.0102 0.059 (Be2) -0.038 (F2

+)
PBE0 6-311G(2df, p) 0.25 0.75 1.00 0.0005 0.0098 0.069 (Be2) -0.050 (F2

+)
PBEha 6-311G(2df, p) 0.32 0.68 1.00 -0.0033 0.0110 0.096 (Be2) -0.061 (F2

+)
PBEsolha 6-311G(2df, p) 0.60 0.40 1.00 -0.0179 0.0249 0.231 (Be2) -0.098 (F2

+)
TPSSh 6-311++G(3df, 3pd) 0.10 0.90 1.00 0.0068 0.0096 0.062 (Li2) -0.024 (F2

+)
revTPSSha 6-311++G(3df, 3pd) 0.10 0.90 1.00 0.0070 0.0100 0.078 (Li2) -0.028 (F2

+)
revTPSSha 6-311++G(3df, 3pd) 0.20 0.80 1.00 0.0020 0.0091 0.102 (Be2) -0.044 (F2

+)

a All values are in Å. Error ) calculated - experiment. The mean experimental re is 1.565 Å. See also the footnote of Table 1.
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We have also constructed optimized empirical parameters
which surpass the standard ones for many popular hybrids,
except the M06-2X hybrid meta-GGA that contains more
than 30 empirical parameters. Perhaps the best overall
performance is achieved by our refitted BPW91habc (e.g., a
) 0.20, b ) 0.70, and c ) 0.57, although different parameter
combinations can produce similar results). Its performance
seems better than that of the standard B3PW91, B3LYP, and
PBE0. Our PBEha with a ) 0.32 also seems to perform better
than the standard PBE0 with a ) 0.25 for thermochemistry.

The molecular properties we have considered are those
of the following test sets: G2-32 (32 ZPE-corrected atomi-
zation energies), AE6 (6 atomization energies), G3/99 (223
enthalpies of formation), BH6 (6 energy barriers), and K9
(kinetics) for thermochemistry as well as IP86 (86 ioniza-
tions), EA58 (58 electron affinities), PA8 (8 proton affinities),
and T-96R (96 bond lengths). We tested B3LYP, B3PW91,
BPW91, PBE, PW86PBE, PBEsol, TPSS, and revTPSS
functionals and their global hybrids, using large triple-� basis
sets. We also investigated the effects of fitting and basis sets.
Here we will summarize the conclusions from our numerical
studies in greater detail:

9.1. Test Sets. Our results show that the G2-32 test set is
not suitable for testing the performance of any method for
thermochemistry; the test set is not representative. The AE6
test set performs considerably better, but we obtained
somewhat different results on the large G3/99 test set. The
AE6 and the G3/99 test sets give different optimal weight
of the exact exchange for the PBEsol functional. Moreover
the BPW91habc, TPSSh, and revTPSSha functionals perform
differently on the two test sets.

The atomization energies for the molecules of the AE6
test set depend almost linearly on the weight of exact
exchange, but this dependence varies. For five out of six
molecules, the binding is reduced as the weight of exact

exchange increases from zero, but SiH4 shows the opposite
behavior. Consequently the optimal weight of the exact
exchange depends on the composition of the test set. Larger
test sets are needed for reliable parameter optimizations.

9.2. Why B3LYP Works. The overbinding of the BPW91,
PW86PBE, PBE, TPSS, revTPSS, and PBEsol functionals
is efficiently compensated by a variable amount of exact
exchange (with a larger overbinding requiring a larger portion
of exact exchange). In contrast the BLYP functional typically
underbinds. Since inclusion of exact exchange worsens the
underbinding, it leads to worse results for BLYPha on the
AE6 and G3/99 test sets. The origin of the good results for
B3LYP is the reduced gradient correction for the B88
exchange and the mixing of SVWN3 and LYP correlation.
(In the first paragraph of Section 4, we corrected a numerical
error in the literature that had overly favored B1LYP over
B1PW91 on the nonrepresentative G2-32 test set.)

9.3. PBEsol Total Energies Are Improved Consi-
stently by Hybridization. We observed for PBEsolha on
the AE6 test set that all atomic and molecular energies
improve as the weight of the exact exchange increases to
60%. The total energies of other semilocal functionals can
be overcorrected by hybridization. For example, PBEha and
other hybrid functionals give too negative H atom energies,
and B3LYP gives too negative atomic and molecular energies
for all components of the AE6 test set.

9.4. Hybrid Parameters a, b, and c Are Not Inde-
pendent. In the three-parameter hybrids, the b and c
parameters compensate each other’s effects on the ME and
partly on MAE. This shows that many different parametri-
zations might give practically the same results, as was
demonstrated for several BPW91habc hybrids.

9.5. Performance of Refitted Hybrid Functionals for
Thermochemistry. We have constructed new BPW91habc,
PBEha, PBEsolha, and revTPSSha functionals. The best
performer for the G3/99 test set is the BPW91habc hybrid
with a ) 0.20, b ) 0.70, and c ) 0.57 (MAE ) 3.1
compared to the MAE ) 4.9 and 3.9 kcal/mol for the B3LYP
and B3PW91 functionals). This functional performs particu-
larly well for the AE6 test set (MAE ) 2.1 compared to the
MAE ) 2.6 and 4.0 kcal/mol for the B3LYP and B3PW91
functionals). The new PBEh (a ) 0.32) also performs better
for the G3/99 test set than the original PBE0 (a ) 0.25)
(MAE ) 4.7 vs 6.7 kcal/mol, respectively), and it performs
better for the AE6 test set and for reaction kinetics (RMSE
) 3.5 kcal/mol for the K9 test set). The PBEsolha (a ) 0.60)
gives particularly accurate results for reaction kinetics
(RMSE ) 1.8 kcal/mol for the K9 test set), but it does not
perform well for the G3/99 test set (MAE ) 12.0 kcal/mol).
The revTPSSha (a ) 0.10) shows good performance for the
G3/99 test set (MAE ) 4.3 kcal/mol), a small improvement
over the revTPSS results (MAE ) 5.0 kcal/mol). TPSSh
performs slightly better (MAE ) 3.9 kcal/mol) than
revTPSSha.

9.6. Basis Sets. Simplification of the 6-311++G(3df, 3pd)
to 6-311+G(3df, 3pd) basis sets leads to a slight overbinding
that is proportional to the number of the H atoms in the
molecule. The use of the smaller basis set is advantageous
in computer time, without altering the conclusions. Further

Figure 4. Radar or polar chart summary of the relative MAEs
compared to B3LYP MAE (MAE(functional)/MAE(B3LYP)) for
the K9, G3/99, IP86, EA58, PA8, and T96R test sets. The
connecting lines are simply for guiding the eye. Smaller value
means better performance.
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simplification of the 6-311+G(3df, 3pd) basis set by remov-
ing polarization functions leads to underbinding. A general
overbinding of a functional can be partly compensated by
the underbinding effect of the 6-311+G(2df, p), 6-311G(d,
p), or cc-pVTZ basis-sets. Comparison of the cc-pVQZ and
6-311+G(3df, 3pd) basis sets shows that these basis sets are
close to the basis set limit for density functional theory (DFT)
calculations.

9.8. Performance for Ionization Energies and Elec-
tron and Proton Affinities. For ionization potentials of the
IP86 test set, the best MAEs are slightly below 0.2 eV. The
order of performance is B3LYP, PBEsolha, and BPW91ha,
with negligible differences between the functionals. The ME
shows again a quasilinear dependence on the value of a in
eq 5. In general the hybrid functionals perform better than
their nonhybrid counterparts, in agreement with ref 45. For
several elements of the test set, the errors are large, as the
open-shell 1Σ+ singlet state of the CN+ ion is not correctly
described by the functionals and the B3LYP geometries of
the CH4

+, BCl3
+,B2F4

+ and BF3
+ cations used for calcula-

tions are incorrect.

For electron affinities (EA58 test set), the GGAs slightly
overbind the extra electron. The TPSS meta-GGA however
shows a slight underbinding of the electron, and this is
somewhat more pronounced for revTPSS. The BLYP and
the PBEsol functionals show the best performance (MAE )
0.11 eV). Mixing exact exchange with GGA or meta-GGA
functionals shifts the ME to the electron-underbinding
direction, and again we observed a quasilinear relationship
between the value of a in eq 5 and the ME for BPW91ha,
PBEha, and PBEsolha. For EA58, inclusion of exact exchange
deteriorates the results. The largest deterioration can be
observed for functionals that underbind at the semilocal level
(like TPSS or revTPSS) or for hybrids functionals with large
weight of exact exchange (PBEsolha).

For proton affinities (PA8 set), the GGA functionals
qualitatively differ from each other, and the order of the
functionals from the most underbinding to the most overbind-
ing is PBEsol, BLYP, PBE, BPW91, TPSS, and revTPSS
(ME ) -2.7, -1.5, -0.8, +0.9, 1.7, and 1.8 kcal/mol). The
hybrid functionals describe more correctly the protonation
and decrease the MAE from 1.5 to around 1 kcal/mol. The
largest positive error was observed for C2H2 for all functionals.

9.7. Performance for Bond Lengths. While the LSDA
error compensation gives a reasonable prediction for the re

values of the T-96R test set, the introduction of gradient
correction (GGA and meta-GGA) gives too long re values
and is efficiently compensated by the exact exchange. Again
a quasilinear dependence of the ME on the value of exact
exchange mixing (a in eq 5) was observed for the BPW91ha,
PBEha, and PBEsolha functionals. Notice that the ME values
for BPW91habc depend only on the value of a and show much
less dependence on the b and c parameters of eq 7 (cf. Table
8). The best functionals are revTPSSha, B3PW91, TPSSh,
PBEh, BPW91ha, and B3LYP. All these functionals show
MAEs about 0.01 Å. We identified several problematic
compounds in the T-96R molecular geometry test set: Be2,
Li2, and Na2. Be2 is bound by dispersion interaction that is
not described well by GGA or meta-GGA. (It is unbound in

the Hartree-Fock description.) Although TPSS, PBE, and
PBEsol bind Be2, inclusion of exact exchange makes re very
large (with an error up to 0.231 Å). The dispersion-bound
complexes cannot be described correctly by GGA, metaGGA,
or global hybrid functionals. An a posteriori dispersion
correction might remedy such errors at no cost by adding
the missing C6, C8, and C10 terms.
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A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski , Fox, D. J. Gaussian 09, revision A.2; Gaussian,
Inc.: Wallingford, CT, 2009.

(77) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A.
J. Chem. Phys. 2001, 114, 108.

(78) Kannemann, F. O.; Becke, A. D. J. Chem. Theory Comput.
2009, 5, 719.

(79) Ruzsinszky, A.; Csonka, G. I.; Scuseria, G. E. J. Chem.
Theory Comput. 2009, 5, 902.

(80) Chakravorty, S. J.; Gwaltney, S. R.; Davidson, E. R.; Parpia,
F. A.; Fischer, C. F. Phys. ReV. A: At., Mol., Opt. Phys.
1993, 47, 3649.

(81) Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari,
K. J. Chem. Phys. 1999, 110, 7650.

(82) Lee, D.; Furche, F.; Burke, K. J. Phys. Chem. Lett. 2010, 1,
2124, and references therein.

(83) Ruzsinszky, A.; Csonka, G. I.; Perdew, J. P. J. Phys. Chem.
A. 2005, 109, 11015.

(84) Steinmann, S. N.; Csonka, G. I.; Corminboeuf, C. J. Chem.
Theory Comput. 2009, 5, 2950, and references cited therein.

CT100488V

Global Hybrid Functionals J. Chem. Theory Comput., Vol. 6, No. 12, 2010 3703



Optoelectronic and Excitonic Properties of Oligoacenes:
Substantial Improvements from Range-Separated

Time-Dependent Density Functional Theory

Bryan M. Wong*,† and Timothy H. Hsieh‡

Materials Chemistry Department, Sandia National Laboratories, LiVermore,
California 94551, United States, and Department of Physics, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, United States

Received September 16, 2010

Abstract: The optoelectronic and excitonic properties in a series of linear acenes (naphthalene
up to heptacene) are investigated using range-separated methods within time-dependent density
functional theory (TDDFT). In these rather simple systems, it is well-known that TDDFT methods
using conventional hybrid functionals surprisingly fail in describing the low-lying La and Lb valence
states, resulting in large, growing errors for the La state and an incorrect energetic ordering as
a function of molecular size. In this work, we demonstrate that the range-separated formalism
largely eliminates both of these errors and also provides a consistent description of excitonic
properties in these systems. We further demonstrate that reoptimizing the percentage of
Hartree-Fock exchange in conventional hybrids to match wave function-based benchmark
calculations still yields serious errors, and a full 100% Hartree-Fock range separation is essential
for simultaneously describing both of the La and Lb transitions. From an analysis of electron-hole
transition density matrices, we finally show that conventional hybrid functionals over-delocalize
excitons and underestimate quasiparticle energy gaps in the acene systems. The results of our
present study emphasize the importance of both a range-separated and asymptotically correct
contribution of exchange in TDDFT for investigating optoelectronic and excitonic properties,
even for these simple valence excitations.

1. Introduction

Conjugated organic structures have attracted significant
recent attention due to their potential applications in single-
molecule transistors and organic photovoltaics. In the quest
for smaller and more efficient electronics, organic semicon-
ductors serve as a promising alternative to their silicon
counterparts because of their increased electronic efficiency1-5

and ease of chemical functionalization.6-10 In this context,
oligoacenes which are composed of linearly fused benzene
rings (Figure 1) have high application potential since they
possess large charge-carrier mobilities and tunable electronic
band gaps. Most notably, pentacene is already utilized as an
organic field-effect transistor due to its large hole mobility

(5.5 cm2/V s) which exceeds that of amorphous silicon.11-13

In general, the linear acenes are especially important since
they form the basic fundamental units of armchair graphene
nanoribbons, which continue to garner enormous interest as
novel nanoscale materials.14-19

In addition to their promising photovoltaic applications,
the oligoacenes are also noteworthy as a unique system in
which the successes and failures of time-dependent density
functional theory (TDDFT) can be assessed and addressed.
In 2003, Grimme and Parac noted a dramatic failure (>0.5
eV error in excitation energies) of TDDFT using standard
hybrid functionals for the lowest-lying πf π* states of the
oligoacenes.20 Their findings were particularly unusual since
these types of valence excitations are typically well described
(within 0.1 eV) by hybrid TDDFT calculations. While it is
well-known that long-range charge-transfer and Rydberg
excitations provide a significant challenge for TDDFT,21-32
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these effects are not present in the acene systems since none
of the valence excitations possess Rydberg character or
involve any long-range charge transfer (both the ground- and
excited-state dipole moments are exactly zero by molecular
symmetry). As a result, the unexpected failure of TDDFT
in these simple valence excitations is most unusual and
somewhat surprising.

The present study has two aims. First, we show that certain
range-separated functionals,33-46 which incorporate both a
position-dependent admixture and an asymptotically correct
contribution of Hartree-Fock (HF) exchange, yield substan-
tial improvements over conventional hybrids for the various
oligoacene excitations. Numerical optimization of parameters
in the range-separated and hybrid functionals is carried out
to understand their effect on excitation energies and their
overall trends. Following the two-dimensional real-space
analysis approach of Tretiak et al.,47-50 we then examine
excitonic effects for the various excitations and TDDFT
methods. The transition densities and electron difference
density maps enable us to understand why conventional
hybrids fail and how range-separated functionals accurately
reproduce excitation energies and quasiparticle energy gaps
for each of the different transitions. We begin by briefly
reviewing these two different formalisms and then compare
their accuracy in predicting oligoacene excitation properties.

2. Theory and Methodology

2.1. Global Hybrid Functionals. Recall that DFT is an
exact theory in which the only inaccuracies encountered in
practice arise from approximations to the (still unknown)
exchange-correlation functional. One of the most widely used
DFT schemes for the exchange-correlation energy is Becke’s
three-parameter B3LYP method,51 which has a relatively
simple formulation given by

In this expression, Ex,HF is the HF exchange energy based
on Kohn-Sham orbitals, Ex,Slater is the uniform electron gas
exchange-correlation energy,52 ∆Ex,Becke88 is Becke’s 1998
generalized gradient approximation (GGA) for exchange,53

Ec,VWN is the Vosko-Wilk-Nusair 1980 correlation func-
tional,54 and ∆Ec,LYP is the Lee-Yang-Parr correlation
functional.55 Depending on the choice of GGA, there are
numerous other hybrid functionals in the literature which
combine different GGA treatments of exchange and correla-
tion with varying coefficients. In these “global hybrid”
functionals, the fraction of nonlocal HF exchange, a0, is held
constant in space and fixed to a GGA-specific value (the
B3LYP functional, for example, is parametrized with a0 )
0.20).

2.2. Range-Separated Functionals. In contrast to con-
ventional hybrids which incorporate a constant fraction of
HF exchange, the long-range-corrected35,37,40,41 (abbreviated
as LC or LRC in the literature) formalism mixes HF
exchange densities nonuniformly by partitioning the electron
repulsion operator as

The “erf” term denotes the standard error function. r12 ) |r1

- r2| is the interelectronic distance between electrons at
coordinates r1 and r2, and µ is the range-separation parameter
in units of Bohr-1. The first term in eq 2 is a short-range
interaction which decays rapidly on a length scale of ∼2/µ,
and the second term is the long-range part of the Coulomb
potential. For a general GGA or hybrid functional, the
corresponding exchange-correlation energy according to the
LC formalism is

In this expression, Ec,DFT is the original, unmodified DFT
correlation contribution, Ex,DFT

SR and Ex,HF
SR are the respective

DFT and HF contributions computed with the short-range
part of the Coulomb operator (first term in eq 2), and Ex,HF

LR

is the HF exchange contribution evaluated using the long-
range part of the Coulomb potential56 (second term in eq
2). The aHF parameter is the coefficient of HF exchange
present in the original hybrid functional (aHF ) 0 if the
original functional is a pure density functional, i.e., BLYP,
BOP, or PBE).

It is important to mention at this point that there are also
several other range-separation techniques and functionals in

Figure 1. Molecular structure and atom labels for the linear
acenes. The specific atom numbers depicted in this figure
define an ordered basis for generating the transition density
matrices discussed in section 3.

Exc
global ) a0Ex,HF + (1 - a0)Ex,Slater + ax∆Ex,Becke88 +

(1 - ac)Ec,VWN + ac∆Ec,LYP(1)

1
r12

)
1 - erf(µr12)

r12
+

erf(µr12)

r12
(2)

Exc
LC ) Ec,DFT + (1 - aHF)Ex,DFT

SR + aHFEx,HF
SR + Ex,HF

LR (3)

Properties of Oligoacenes J. Chem. Theory Comput., Vol. 6, No. 12, 2010 3705



the literature, and that the prescription given in eqs 2 and 3
is only one of many LC forms. For example, the range-
separation technique has been further modified by Handy et
al.39,42 with their CAM-B3LYP (Coulomb-attenuating
method-B3LYP) methods. Similarly, the Scuseria group has
also developed several new range-separated functionals based
on a semilocal exchange-hole approach.43-46 These exchange-
hole models have been further refined by the Herbert group
to design new functionals which accurately describe both
ground and excited states.25,28 In terms of chemical applica-
tions, Jacquemin et al. have also presented benchmarks for
several families of excitations including the electronic spectra
of anthroquinone dyes,57 n f π* transitions in nitroso and
thiocarbonyl dyes,58 and π f π* excitations in organic
chromophores.59 Very recently, there has also been pioneer-
ing work by the Baer group and the Kronik group in
constructing range-separation functionals tuned entirely from
first principles.29,30 The key to their success is the choice of
a range-separation parameter, µ, which minimizes the dif-
ference between the ionization energy (IE) and the negative
of the highest-occupied molecular orbital (HOMO) energy,
-EHOMO, of the molecule. Since the ionization energy is
rigorously equal to -EHOMO for an “exact functional,” the
formalism by Baer and co-workers is entirely self-consistent
and does not require any experimental input or high-level
benchmark calculations.

In all of these various range-separated methods, the key
improvement in their accuracy is the smooth separation of
DFT and nonlocal HF exchange interactions through the
parameter µ. Specifically, the exchange-correlation potentials
of conventional density functionals exhibit the wrong
asymptotic behavior, but the LC scheme ensures that the
exchange potential smoothly recovers the exact -1/r depen-
dence at large interelectronic distances. It is important to
point out that the length-scale partitioning in the LC
formalism is essential for obtaining accurate TDDFT results.
More precisely, a 100% global HF exchange fraction without
range separation can corrupt the delicate balance between
exchange and correlation contributions, resulting in large
errors in excitation energies. For extended charge-transfer
processes, the long-range exchange corrections are also
particularly vital since these types of excitations are espe-
cially sensitive to the asymptotic part of the nonlocal
exchange-correlation potential.

2.3. Computational Details. For the linear acenes in this
work, we compared the performance of global hybrid
functionals against range-separated and wave function-based
calculations. In order to investigate the role of different HF
exchange schemes in the various TDDFT methods, we
explored the effect of changing the HF exchange fraction,
a0, in the global hybrid model and the result of varying the
range-separation parameter µ within the LC formalism. For
the parametric study on global hybrids, we kept the same
functional form in Becke’s three-parameter model (eq 1) and
computed vertical singlet excitation energies as a function
of a0 ranging from 0.0 to 1.0 in increments of 0.05. In these
calculations, we fixed ax ) 1 - a0 in eq 1 but kept the
correlation contribution with ac ) 0.81 unchanged. The ax

) 1 - a0 convention is a common choice used in many

hybrid functionals60-63 such as Becke’s B1 convention61 (in
a previous study on large oligothiophenes,31 we had carried
out calculations with ax fixed to the original 0.72 value
recommended by Becke and found that all of the excitation
energies were nearly identical compared to the ax ) 1 - a0

convention).

To explore the effect of range-separated exchange on the
optoelectronic properties of the acenes, we computed vertical
singlet excitation energies as a function of µ ranging from 0
to 0.90 Bohr-1 (in increments of 0.05 Bohr-1) while keeping
the correlation contribution Ec,DFT in the LC-BLYP functional
unchanged. In our study, we utilized several range-separated
functionals including CAM-B3LYP, LC-BOP, LC-PBE, LC-
ωPBE, and LC-BLYP but found that all of the full-HF-
exchange LC functionals gave similar results for the linear
acenes. It is very important to note that the original CAM-
B3LYP functional is defined39 with a coulomb-attenuating
parameter of R + � ) 0.65 and, therefore, exhibits a -0.65/r
dependence for the exchange potential. As a result, the CAM-
B3LYP functional is particularly different than the other LC
functionals considered in this work since it does not
incorporate a full 100% HF exchange at large interelectronic
distances. The very similar results obtained from the other
full-exchange LC functionals imply that the excitation
energies are not very sensitive to the specific DFT correlation
contribution used, and that the systematic error observed
previously by Grimme and Parac20 is largely due to the HF
exchange component for the acene systems. In light of these
similarities, much of our parametric study focuses on the
LC-BLYP results since the other full-HF-exchange LC
methods give very similar energies as a function of µ. We
should also note that a direct comparison between LC-BLYP,
CAM-B3LYP, and the global hybrid model in eq 1 allows
a very fair and consistent evaluation since all of these
methods have similar correlation contributions.

As benchmarks for assessing the quality of the various
TDDFT methods, we calculated CC2/cc-pVTZ excitation
energies for the linear acenes ranging from n ) 2 to 7
benzene rings (we stop at n ) 7 since our CC2/cc-pVTZ
calculations indicate a very abrupt and large multireference/
diradical character for n ) 8). We use the CC2 excitation
energies as reference values since EOM-CCSD and CASPT2
calculations with the cc-PVTZ basis set were out of reach
for larger acenes containing five or more benzene rings.
Furthermore, we consider the CC2 results as reliable refer-
ence values since they accurately reproduce solvent-corrected
experimental excitation energies20 (see Table 1) and are close
to CC3 benchmark calculations for the smaller acenes.64 As
an additional check on the quality of the CC2 calculations,
we found that none of the acene systems required a
multireference treatment of electron correlation (D1 diag-
nostic values were in the 0.04-0.06 range), and contributions
from single excitations were always greater than 90%.

In order to maintain a consistent comparison across the
B3LYP, CAM-B3LYP, LC-BOP, LC-PBE, LC-ωPBE, LC-
BLYP, and CC2 levels of theory, identical molecular
geometries were used for each of these methods. These
reference geometries were optimized at the B3LYP/cc-PVTZ
level of theory and are available in the Supporting Informa-
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tion. For all of the TDDFT excitation energies, we used a
cc-PVTZ basis set and a high-accuracy Lebedev grid
consisting of 96 radial and 302 angular quadrature points.
All TDDFT calculations were performed with a locally
modified version of GAMESS,65 and the CC2 calculations
were carried out with the TURBOMOLE package.66

3. Results and Discussion

We focus on two different valence excitations in the linear
acenes, commonly labeled in the literature20,67 as La (lowest
excited state of B2u symmetry) and Lb (B3u symmetry). The
La excited state results from a HOMO f LUMO transition
with polarization along the molecular short axis, and the Lb

state is characterized by a nearly equal mixture of HOMO-1
f LUMO and HOMOf LUMO+1 excitations with a total
polarization along the long axis.68 Using the CC2 excitations
as reference values, we performed a total root-mean-square
error (RMSE) analysis for all 12 energies (six La and six Lb

transitions) as a function of µ and a0. As seen in Figure 2a,
the RMSE curve for LC-BLYP has a minimum at µ ) 0.29
Bohr-1 with a RMS error of 0.10 eV. Perhaps, surprisingly,
this RMSE-optimized value of µ is nearly identical to the
0.31 Bohr-1 value recommended for simultaneously describ-
ing excitation and fluorescence energies in large oligoth-
iophenes.31 The RMSE in Figure 2b for the B3LYP-like
global hybrid functional has a minimum at a0 ) 0.50, with
a larger error of 0.20 eV. It is worth noting that our RMSE-
minimization with a0 ) 0.50 and ax ) 1 - a0 yields a
functional very similar to the BHHLYP functional (originally
defined with ac ) 0) with the exception that our choice has
an extra correlation contribution due to the ∆Ec,LYP term in
eq 1. We denote this reoptimized hybrid functional with a0

) 0.50 as B3LYPopt in the remainder of this work. Unless
otherwise noted, all further LC-TDDFT calculations indicate
a range-separation parameter of µ ) 0.29 Bohr-1.

Table 1 compares the La and Lb excited-state energies
between B3LYP, B3LYPopt, CAM-B3LYP, LC-BOP, LC-
PBE, LC-ωPBE, LC-BLYP, and CC2, and Figure 3a,b
depicts in more detail the general trends in transition energies
(expressed in wavelength units) between the various TDDFT

and CC2 results. It is most important to note in these figures
that the energetic ordering of the two electronic states is
different, depending on the size of the acene. Specifically,
both CC2 and experimental studies69 indicate that a curve
crossing between the La and Lb states occurs slightly before
n ) 3 benzene rings (anthracene). For all of the other larger
acenes, the La state lies energetically below the Lb state.
Examining Table 1 and Figure 3b, we find that the full-

Table 1. Comparison of TDDFT, CC2, and Experimental Excitation Energies [eV] (Wavelengths [nm] Are in Parentheses)
for the La and Lb States in the Linear Acenesa

number of
rings

B3LYP
(a0 ) 0.20)

B3LYPopt

(a0 ) 0.50)
CAM-B3LYP

(R + � ) 0.65)
LC-BOP

(µ ) 0.29)
LC-PBE

(µ ) 0.29)
LC-ωPBE
(µ ) 0.29)

LC-BLYP
(µ ) 0.29) CC2 experiment20

La state
2 4.39 (282) 4.69 (264) 4.68 (265) 4.76 (260) 5.05 (246) 4.80 (258) 4.76 (260) 4.89 (254) 4.66 (266)
3 3.22 (385) 3.54 (350) 3.54 (350) 3.64 (341) 3.66 (339) 3.67 (338) 3.63 (342) 3.70 (335) 3.60 (344)
4 2.44 (508) 2.75 (451) 2.77 (448) 2.89 (429) 2.89 (429) 2.91 (426) 2.88 (431) 2.90 (428) 2.88 (431)
5 1.89 (656) 2.19 (566) 2.22 (558) 2.36 (525) 2.36 (525) 2.38 (521) 2.35 (528) 2.35 (528) 2.37 (523)
6 1.49 (832) 1.77 (700) 1.83 (438) 1.97 (629) 1.98 (626) 1.99 (623) 1.96 (633) 1.95 (636) 2.02 (614)
7 1.18 (1051) 1.46 (849) 1.53 (810) 1.68 (738) 1.69 (734) 1.71 (725) 1.68 (738) 1.66 (747)
MAE (eV) 0.42 0.13 0.11 0.04 0.10 0.06 0.04 0.09

Lb state
2 4.48 (277) 4.75 (261) 4.63 (268) 4.59 (270) 4.62 (268) 4.61 (269) 4.59 (270) 4.47 (277) 4.13 (300)
3 3.87 (320) 4.14 (299) 4.04 (307) 4.02 (308) 4.04 (307) 4.03 (308) 4.02 (308) 3.90 (318) 3.64 (341)
4 3.48 (357) 3.73 (332) 3.66 (339) 3.65 (340) 3.67 (338) 3.66 (339) 3.65 (340) 3.52 (352) 3.39 (366)
5 3.21 (386) 3.46 (358) 3.40 (365) 3.40 (365) 3.41 (364) 3.41 (364) 3.39 (366) 3.27 (379) 3.12 (397)
6 3.02 (411) 3.26 (380) 3.21 (386) 3.22 (385) 3.23 (384) 3.23 (384) 3.22 (385) 3.09 (401) 2.87 (432)
7 2.88 (431) 3.11 (399) 3.08 (403) 3.09 (401) 3.10 (400) 3.10 (400) 3.08 (403) 2.97 (417) -
MAE (eV) 0.18 0.44 0.36 0.35 0.36 0.36 0.34 0.22 -

a The mean absolute errors (MAE) relative to solvent-corrected experimental results are listed below each of the various methods.
Excitation energies were computed with the cc-pVTZ basis with the same reference geometry for all of the different methods.

Figure 2. Total root-mean-square errors (RMSE) as a
function of (a) the range-separation parameter µ in the LC-
BLYP functional and (b) the HF exchange fraction a0 in a
B3LYP-like hybrid functional. Part a shows the RMSE curve
having a minimum at µ ) 0.29 Bohr-1, and part b shows the
RMSE curve having a minimum at a0 ) 0.50.
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exchange LC-TDDFT calculations are unique in that they
show excellent agreement with CC2 energies for both the
La and Lb excitations. Moreover, all of the LC-TDDFT
methods preserve the correct ordering of electronic states
between n ) 2 and n ) 3 benzene rings. In the case of the
CAM-B3LYP functional though (which only has 65% HF
exchange at long-range), there are still some systematic
discrepancies for the La excitations which are still somewhat
underestimated. Although the energetic ordering of the La

and Lb states is correctly predicted by CAM-B3LYP, the
energy differences are almost negligible, with only a 0.05
eV difference separating the La and Lb states of naphthalene
(compared to a ∼0.2 eV difference with the full-exchange
LC functionals). These observations strongly indicate that a
range-separated partitioning of exchange alone, without
100% asymptotic HF exchange, is not sufficient, and a full
asymptotic contribution of exchange is essential for ac-
curately describing both the La and Lb excitations. Turning
now to the global hybrids, Figure 3a shows that the B3LYP
functional severely underestimates excitation energies (i.e.,
overestimates absorption wavelengths) for the La electronic
state. The situation is somewhat improved upon using the
RMSE-optimized a0 ) 0.50 value in B3LYPopt; however,

this procedure results in Lb excitations which are now
oVerestimated and La excitations which are still quite
underestimated. Most importantly, both B3LYP and
B3LYPopt give an incorrect ordering of electronic statessthe
crossing between La and Lb curves occurs much too early in
both functionals, and the electronic symmetries in naphtha-
lene have the wrong order. In general, the accuracy in
excitation energies and trends is significantly improved with
the LC scheme, while conventional hybrids are unable to
reproduce the qualitative behavior in excitations eVen if the
fraction of HF exchange is optimized.

From these results, it is interesting to note that long-range
charge transfer is not responsible for the unexpected failure
of B3LYP in these highly symmetrical systems. In a recent
benchmark study, Peach et al.26 introduced a diagnostic test
which quantifies the spatial overlap, Λ, between the occupied
and virtual orbitals involved in an excitation. This diagnostic
metric is typically used to postprocess a converged TDDFT
calculation and has an intuitive form given by

In this expression, Xia and Yia are the virtual-occupied and
occupied-virtual transition amplitudes, respectively, and Oia

is the spatial overlap integral of the moduli of the two
orbitals, Oia ) ∫|φi(r)||φa(r)| dr. By construction, the
diagnostic metric Λ is bounded between 0 and 1, with small
values signifying a long-range excitation and large values
indicating a localized, short-range transition. On the basis
of their extensive benchmarks, if Λ is less than 0.3, indicating
little overlap and significant long-range charge transfer
character, hybrid functionals are predicted to yield inaccurate
results. In Table 2, we computed the Λ diagnostic for both
the La and Lb states and found that all values were well above
the 0.3 threshold (some of them even approaching 0.9),
indicating a substantial overlap and no long-range charge
transfer in these systems (it is rather interesting though that
the diagnostic incorrectly predicts the La excited state to be
more accurately described than the Lb state in both the
B3LYP and LC-BLYP functionals). Thus, instead of long-

Figure 3. Comparison between TDDFT and CC2 excitation
energies (in wavelength units) for (a) conventional global
hybrid and (b) range-separated LC-BLYP functionals. The
B3LYPopt functional denotes a modified B3LYP functional with
a RMSE-optimized exchange fraction of a0 ) 0.50, as
discussed in the main text.

Table 2. Comparison of the TDDFT Λ-Overlap Diagnostic
for the La and Lb Excited States in the Linear Acenes

number of rings B3LYP (a0 ) 0.20) LC-BLYP (µ ) 0.29)

Λ-overlap for La states
2 0.89 0.89
3 0.88 0.88
4 0.88 0.88
5 0.89 0.89
6 0.89 0.89
7 0.90 0.90

Λ-overlap for Lb states
2 0.65 0.64
3 0.65 0.65
4 0.63 0.63
5 0.62 0.62
6 0.60 0.61
7 0.59 0.60

Λ )
∑
i,a

(Xia + Yia)
2Oia

∑
i,a

(Xia + Yia)
2

(4)
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range charge transfer from one end of the molecule to the
other, we do find that the La excitation involves a sizable
local rearrangement of electron density. In support of this
assertion, Figure 4 depicts the electron density difference
map (Fexcited - Fground) for the La and Lb excited states in
pentacene computed at the CC2 level of theory (difference
maps for the other acenes can be found in the Supporting
Information). The electron density difference map gives a
dynamic visualization of electronic rearrangement for a
transition, with red regions (positively valued) denoting an
accumulation of density and blue regions (negatively valued)
representing a depletion of density upon excitation. As
depicted in Figure 4, the La state involves significantly more
local charge redistribution than the higher-energy Lb state.
In contrast, the Lb excited-state density is very similar to
the ground state, as evidenced by the very small and sparsely
distributed isosurface regions. These CC2 difference densities
confirm the long-held valence-bond viewpoint70-72 that the
La state possesses an “ionic” character whereas the Lb

transition is primarily covalent in nature. Notice also that
the length scale of charge redistribution is on the order of
the carbon-carbon bond length (∼1.4 Å), which is compa-
rable to the length scale at which LC-BLYP predicts long-
range HF exchange to dominate short-range DFT correlation
(1/µ ∼ 1.8 Å). Even though none of these transitions have
long-range charge transfer character, our findings do support
the physical interpretation that a range-separated contribution
of full HF exchange on the length scale of the molecule is
still necessary for accurately describing these local charge
rearrangements.

In order to provide further insight into these optoelectronic
trends, we carried out an investigation of excitonic effects
by analyzing electron-hole transition density matrices for
the various excitations and TDDFT methods. Following the
two-dimensional real-space analysis approach of Tretiak et
al.,47-50 one can construct coordinate Qv and momentum
Pv matrices with elements given by

where ψg and ψV are ground and excited states, respectively.
The Fermi operators ci

† and ci represent the creation and
annihilation of an electron in the ith basis set orbital in ψ.

For the acene systems analyzed in this work, the Qv and Pv

matrices each form a two-dimensional xy grid over all of
the carbon sites along the x and y axes. The specific ordering
of the carbon sites used in this work is shown in Figure 1.
The (QV)mn coordinate matrix gives a measure of exciton
delocalization between sites m and n, and the (PV)mn

momentum matrix represents the probability amplitude of
an electron-hole pair oscillation between carbon sites m and
n, respectively. Each of these matrices provides a comple-
mentary view of exciton delocalization and electron-hole
coherence for optical transitions within the acene systems.

Figure 5 displays the absolute value of the coordinate
density matrix elements, |(QV)mn|, for the La and Lb excitation
energies computed at the LC-BLYP level of theory. The x
and y axes in this figure represent the benzene repeat units
in the molecule, and the individual matrix elements are
depicted by the various colors. On the basis of its construc-
tion, off-diagonal elements with large intensities represent
widely separated electron-hole pairs between different
atoms. As shown in Figure 5, the La density matrix has more
off-diagonal elements than the corresponding Lb excitation,
whose matrix elements are primarily confined along the
diagonal. These figures reflect the more delocalized nature
of the La state, in agreement with the electron density
difference maps discussed previously. It is also important
to note that all the transition density plots are symmetric
along the counterdiagonal, verifying that no long-range
charge transfer occurs in these systems (an asymmetric

Figure 4. Electron density difference maps (Fexcited - Fground)
for the La and Lb excited states of anthracene computed at
the CC2 level of theory. Red regions denote a positive density
difference (accumulation of density upon electronic excitation),
and blue regions represent a negative density difference
(depletion of density upon excitation). Both densities are
plotted using the same isosurface contour value.

(QV)mn ) 〈ψV|cm
† cn|ψg〉 + 〈ψg|cm

† cn|ψV〉 (5)

(PV)mn ) 〈ψV|cm
† cn|ψg〉 - 〈ψg|cm

† cn|ψV〉 (6)

Figure 5. Contour plots of coordinate density matrices (Q)
for the La and Lb excited states computed at the LC-BLYP
level of theory. The x- and y-axis labels represent the number
of benzene repeat units in the molecule. The elements of the
coordinate matrix, Qmn, give a measure of exciton delocal-
ization between sites m (x axis) and n (y axis). The color scale
is given at the bottom.
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transition density along the counterdiagonal implies more
electrons than holes are localized on one side of the
molecule).

The coherence size, which characterizes the distance
between an electron and a hole, is given by the width of the
momentum density matrix, Pv. To compare excitonic effects
between global and range-separated hybrids, we plot the
absolute value of the momentum density matrix elements,
|(PV)mn|, for both the B3LYP and LC-BLYP functionals in
Figure 6 (transition density plots for all of the different
functionals and excited states can be found in the Supporting
Information). These figures show that the B3LYP functional
gives a more delocalized density-matrix pattern and a larger
coherence size compared to the LC-BLYP functional.
Furthermore, the coherence size as predicted by the B3LYP

functional is larger by nearly one repeat unit in comparison
to the LC-BLYP results. These findings are consistent with
the B3LYP formalism which only incorporates a global
fraction of 20% HF exchange and, therefore, exhibits a
-0.2/r dependence for the exchange potential. As a result,
the asymptotically incorrect B3LYP exchange potential is
not attractive enough, leading to an over-delocalized
electron-hole pair and, therefore, an overestimated coher-
ence size in the acene systems.

Finally, it is interesting to compare quasiparticle energy
gaps predicted by both global hybrid and range-separated
functionals in the acene systems. Within Kohn-Sham
theory,73 the quasiparticle gap can be approximated by the
difference between the lowest unoccupied and highest
unoccupied molecular orbital energies, ELUMO - EHOMO.
Table 3 compares -ELUMO, -EHOMO, and the experimental
ionization energies (IE) for the linear acenes computed at
the B3LYP, CAM-B3LYP, and LC-BLYP levels of theory.
From Kohn-Sham theory, it is well-known that an “exact
functional” (if one had access to such a functional), would
yield an ionization energy exactly equal to -EHOMO. For the
pentacene molecule, as a specific example, the B3LYP
functional provides a -EHOMO value of 4.78 eV which
significantly underestimates the experimental ionization
energy74 of 6.61 eV. The -EHOMO values predicted by CAM-
B3LYP are an improvement over the B3LYP energies, but
the average deviation of -0.70 eV from the experimental
IEs is still quite large. In contrast, the LC formalism, which
incorporates a correct asymptotic behavior of the exchange
potential by construction, gives -EHOMO values in exceptional
agreement with all of the experimental IEs, resulting in an
impressive average deviation of 0.07 eV. These results
complement our previous discussion of La and Lb excitation
energies by further demonstrating that a full 100% asymptotic
contribution of HF exchange is necessary to provide a
consistent description of electronic properties in these
systems. Furthermore, these findings demonstrate that the
range-separated formalism with full asymptotic HF exchange
is very self-consistentsboth the excitation energies and
quasiparticle properties in these systems are predicted
accurately while simultaneously satisfying the energy con-
straints as required by Kohn-Sham theory.

4. Conclusion

In conclusion, the present study clearly indicates that both a
range-separated partitioning as well as an asymptotically

Table 3. Comparison of -ELUMO, -EHOMO, and Experimental Ionization Energies (IE) for the Linear Acenes Computed at the
B3LYP, CAM-B3LYP, and LC-BLYP Levels of Theorya

B3LYP (a0 ) 0.20) CAM-B3LYP (R + � ) 0.65) LC-BLYP (µ ) 0.29)

number of rings -ELUMO (eV) -EHOMO (eV) -ELUMO (eV) -EHOMO (eV) -ELUMO (eV) -EHOMO (eV) exp.74 IE (eV)

2 1.21 6.00 0.10 7.40 -0.60 8.21 8.14
3 1.85 5.43 0.84 6.72 0.17 7.51 7.44
4 2.29 5.05 1.34 6.27 0.69 7.03 6.97
5 2.59 4.78 1.71 5.95 1.07 6.69 6.63
6 2.81 4.59 1.98 5.71 1.36 6.44 6.36
7 2.98 4.45 2.18 5.53 1.57 6.25 -
〈-EHOMO - IE〉 - -1.94 - -0.70 - 0.07 -

a The average deviation of -EHOMO relative to the experimental IE is listed below each of the various methods.

Figure 6. Contour plots of momentum density matrices (P)
for the Lb excited state computed at the B3LYP and LC-BLYP
levels of theory. The x- and y-axis labels represent the number
of benzene repeat units in the molecule. The elements of the
momentum matrix, Pmn, represent the probability amplitude
of an electron-hole pair oscillation between sites m (x axis)
and n (y axis). The color scale is given at the bottom.
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correct contribution of exchange play a vital role in predicting
optoelectronic properties in the linear acenes. Even though
none of the excitations involve extended long-range charge
transfer, we find that a range-separated contribution of full
exchange is still necessary to accurately describe both the
valence excitation energies and the La f Lb curve crossing
in these simple systems. The results of our observations also
strongly indicate that a range-separated partitioning of
exchange by itself, without 100% asymptotic HF exchange
(i.e., CAM-B3LYP), is not sufficient to accurately describe
both the La and Lb states. Conversely, reoptimization of
functional parameters toward 100% full exchange without
range separation in a global hybrid does not improve the
situation either; in fact, this reparameterization results in a
corruption between exchange and correlation errors with
trends in La and Lb excitations being even more poorly
described. In particular, we find that global hybrid functionals
overdelocalize excitons, underestimate quasiparticle energies,
and are unable to reproduce general trends in both La and
Lb, even if the fraction of HF exchange is optimized. The
most important results of our observations indicate that a
simultaneous use of range-separated partitioning as well as
a full contribution of exchange at large interelectronic
distances is essential for accurately describing both the La

and Lb states in these systems.

As acenes form the basis of nanoribbons and other
polycyclic aromatic hydrocarbons,75 this study serves an
important role in determining which TDDFT methods are
most appropriate for these systems, especially since wave
function-based calculations on carbon nanostructures are still
prohibitively demanding. Looking forward, it would be
extremely interesting to see if the range-separated formalism
also provides a similar accuracy for describing triplet states
in acenes and other chromophores. While this study focused
on only singlet excitations, further work is still needed to
understand triplet excitations since exciton fission to low-
lying triplet states ultimately control the electronic efficien-
cies in photovoltaic systems.76 We are currently investigating
these triplet states, with further calculations on extended
organic light-harvesting systems,9 to help predict the ef-
ficiencies of these materials. With this in mind, we anticipate
that the LC-TDDFT technique will play a significant role in
understanding and accurately predicting the optoelectronic
properties in these novel nanostructures.
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Abstract: The Weighted Histogram Analysis Method (WHAM) is a standard technique used to
compute potentials of mean force (PMFs) from a set of umbrella sampling simulations. Here,
we present a new WHAM implementation, termed g_wham, which is distributed freely with the
GROMACS molecular simulation suite. g_wham estimates statistical errors using the technique
of bootstrap analysis. Three bootstrap methods are supported: (i) bootstrapping new trajectories
based on the umbrella histograms, (ii) bootstrapping of complete histograms, and (iii) Bayesian
bootstrapping of complete histograms, that is, bootstrapping via the assignment of random
weights to the histograms. Because methods ii and iii consider only complete histograms as
independent data points, these methods do not require the accurate calculation of autocorrelation
times. We demonstrate that, given sufficient sampling, bootstrapping new trajectories allows
for an accurate error estimate. In the presence of long autocorrelations, however, (Bayesian)
bootstrapping of complete histograms yields a more reliable error estimate, whereas bootstrap-
ping of new trajectories may underestimate the error. In addition, we emphasize that the
incorporation of autocorrelations into WHAM reduces the bias from limited sampling, in particular,
when computing periodic PMFs in inhomogeneous systems such as solvated lipid membranes
or protein channels.

Introduction

The concept of potentials of mean force (PMFs), originally
introduced by Kirkwood,1 is frequently used to characterize
the energetics of transitions in solid, fluid, and biomolecular
systems. A routinely used technique to compute the PMF
along a given reaction coordinate � is umbrella sampling.
That technique aims to overcome limited sampling at
energetically unfavorable configurations by restraining the
simulation system with an additional (typically harmonic)

potential.2 Accordingly, a set of Nw separate umbrella
simulations are carried out, with an umbrella potential

which restrains the system at the position �i
c (i ) 1, ..., Nw)

with a force constant Ki. From each of the Nw umbrella
simulations (sometimes referred to as “umbrella windows”),
an umbrella histogram hi(�) is recorded, representing the
probability distribution Pi

b(�) along the reaction coordinate
biased by the umbrella potential wi(�). The probably most
widely used technique to compute the PMF from histograms,
that is, to unbias the distributions Pi

b(�), is the weighted
histogram analysis method (WHAM).3

On the basis of the histogram method of Ferrenberg and
Swendsen,4 the idea of WHAM is to estimate the statistical
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+46-(0)18-4715056. Fax: +46-(0)18-511755. E-mail: jochen@
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wi(�) ) Ki/2(� - �i
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uncertainty of the unbiased probability distribution given the
umbrella histograms, and subsequently to compute the PMF
that corresponds to the smallest uncertainty. For a derivation
of the equations, we refer to the original publication by
Kumar et al.3 An excellent (and less technical) review on
umbrella simulations and the WHAM procedure has been
presented by Roux.5 The WHAM equations read3

and

Here, � denotes the inverse temperature 1/kBT, with the
Boltzmann constant kB and the temperature T, and nj is the
total number of data points in histogram hj. The statistical
inefficiency gi is given by gi ) 1 + 2τi, with the integrated
autocorrelation time τi of umbrella window i (in units of the
simulation frame time step.) Note that the gi’s cancel from
the WHAM equations if (and only if) the autocorrelation
times in all umbrella windows equal. In contrast, if the gi’s
differ between different histograms, the factors gi

-1 assign
lower weights to histograms with longer autocorrelations.
P(�) denotes the unbiased probability distribution that is
related to the PMF via W (�) ) -�-1 ln[P(�)/P(�0)]. Here,
�0 is an arbitrary reference point where the PMF W (�0) is
defined to zero. The WHAM equations contain two unknown
quantities, that is, the free energy constants fj and the
unbiased distribution P(�), and must therefore be solved
iteratively. Depending on the number of histograms and the
height of the barriers in the PMF, the WHAM equations
typically converge within tens of iterations and up to tens
of thousands of iterations.

Alternative approaches to derive the PMF and the uncer-
tainty from a set of umbrella simulations have been
proposed,6-8 as well as several extensions to the umbrella
sampling technique.9,10

Despite the fact that WHAM has been widely used to
derive PMFs from biomolecular simulations, a standard
protocol to compute the statistical errors for the derived PMF
has not yet evolved. Therefore, we here present a new
WHAM implementation, termed g_wham, that allows one
to compute robust error estimates using different bootstrap
techniques. We apply the techniques on two test systems to
demonstrate the potential and the limitations of the bootstrap
methods. Besides the ability to estimate the statistical error,
g_wham supports a number of features that are expected to
be useful to the community. To compute PMFs along
periodic reaction coordinates such as dihedral angles or
coordinates in a simulation box with periodic boundary
conditions, a periodic WHAM is implemented. Nonharmonic
umbrella potentials can be provided as tabulated potentials.
g_wham allows for the estimatation of autocorrelation times
and the incorporation of these into WHAM. As shown in

the Results, this procedure may yield more realistic PMF
estimates in the presence of long autocorrelations.

The software is freely distributed with the GROMACS
simulation suite.11 If the umbrella simulations were carried
out using the GROMACS pull options, g_wham conveniently
reads the GROMACS output files. In the case of more
complex reaction coordinates, or if the simulations were not
carried out using GROMACS, the user may provide g_wham
input files in text format. A detailed description of g_wham,
including all options, is provided in the Appendix and is
available with the command line g_wham -h.

Methods

Error Estimates from Bootstrap Analysis. g_wham
estimates the statistical uncertainty of the PMF using
bootstrap analysis.12 Bootstrapping is a resampling technique
that can be applied to estimate the uncertainty of a quantity
A(a1, ..., an) which is computed from a large set of n
observations al (l ) 1, ..., n). To calculate the uncertainty in
A, one could redo the n observations multiple times, yielding
several independent estimates for A and hence the uncertainty
in A. That procedure would require many more observations
and is therefore often not tractable.

The observations al are typically drawn from an unknown
underlying probability distribution P(a). The idea of boot-
strapping is to estimate P(a) using the n observations and
subsequently generate new random sets of n hypothetical
observations, based on the estimated distribution. Each of
the sets of n hypothetical observations is used to calculate a
hypothetical value for A. The uncertainty in A is then given
by the standard deviation of the hypothetical values for A.
For a detailed introduction into the bootstrap technique, we
refer to the monograph by Chernick.13

Bootstrapping Trajectories Based on Umbrella His-
tograms. The WHAM procedure computes the PMF based
on the Nw trajectories �i(t) along the reaction coordinate, each
taken from one of the umbrella windows (i ) 1, ..., Nw). All
positions �i during the Nw simulations may thus be considered
as the large set of observations, which we referred to as al

in the previous paragraph.14 Alternatively, complete umbrella
histograms may be considered as the individual observations
(see next section).15 Note that the probability distributions
of �i are already available as the umbrella histograms. Thus,
we can generate new hypothetical observations, that is, a
“bootstrapped” trajectory �b,i(t) for each umbrella histogram
hi(�), such that �b,i(t) is distributed according to the respective
histogram. Each bootstrapped trajectory �b,i(t) yields a new
histogram hb,i(�). The new set of Nw histograms hb,i is
subsequently applied in WHAM to compute a bootstrapped
PMF Wb(�). The whole procedure is repeated Nb times (e.g.,
Nb ) 200), yielding a large set of Nb bootstrapped PMFs
W b,k(�) (k ) 1, ..., Nb). The uncertainty of the PMF is then
given by the standard deviation as calculated by the Nb

bootstrapped PMFs, that is via

P(�) )
∑
i)1

Nw

gi
-1hi(�)

∑
j)1

Nw

njgj
-1 exp[-�(wj(�) - fj)]

(2)

exp(-�fj) ) ∫ d� exp[-�wj(�)] P(�) (3)

σPMF(�) ) [(Nb - 1)-1 ∑
k)1

Nb

(Wb,k(�) - 〈Wb(�)〉)2]1/2 (4)
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Here, 〈W b(�)〉 ) Nb
-1∑i)k

Nb W b,k(�) denotes the average of
the bootstrapped PMFs at position �. One could also calculate
the uncertainty via the standard deviation of the respective
probabilities ∝ exp (-�W b,k(�)), which could subsequently
be translated into the uncertainty of the PMF. We found that
that this procedure yields similar error estimates compared
to the definition in eq 4 applied here.

Any property generated from MD simulations has a natural
time correlation. In order for the bootstrapping procedure to
generate correct error estimates, that autocorrelation must
be taken into account explicitly. Here, we chose the following
procedure to generate autocorrelated bootstrapped trajectories
�b(t) with a given integrated autocorrelation time (IACT) τ,
and distributed according to a histogram h(�). (Here, h(�)
may denote any of the given histograms, and the procedure
is repeated for each histogram.) First, given a normally
distributed random variable of zero mean and unit variance
Rt ∼ N (0,1), we generate a time series x(t) via

where a ) exp(-1/τ). Then, x(t) ∼ N (0,1) and the IACT of
x(t) equals τ. The normally distributed x(t) is translated into
an evenly distributed series on [0,1) using the error function
via x′(t) ) (1 + erf[x(t)�2])/2. Eventually, we solve the
equation

for �b(t), where Ch(�b(t)) denotes the cumulative distribution
function of the (normalized) histogram. Then, �b(t) will be
distributed according to h(�), with an approximate IACT
of τ.

Bootstrapping Complete Histograms. The conforma-
tional sampling of macromolecules during MD simulations
is frequently affected by long autocorrelations, with auto-
correlation times ranging from pico- to microseconds or even
longer. A complete sampling of all coordinates perpendicular
to the reaction coordinate is therefore often intractable, in
particular during a typically short umbrella simulation. In
such situations, the individual umbrella histograms do not
represent all accessible areas of phase space. Bootstrapped
trajectories based on such nonconverged histograms, fol-
lowing the procedure in the previous paragraph, would also
not represent all accessible areas of phase space. In addition,
note that bootstrapping trajectories from given histograms
require at least approximate knowledge of the IACT. Given
only incomplete sampling, however, the IACT may be
severely underestimated because slow transitions may not
occur during the short umbrella simulations. Bootstrapping
trajectories based on incomplete histograms in combination
with underestimated IACTs would severely underestimate
the uncertainty.

If the simulations are affected by such long autocorrela-
tions, we suggest carrying out the simulation of each
umbrella window multiple times from independent initial
frames. Then, we consider complete histograms as individual
observations and randomly select a new set of Nw histograms

from the given set of Nw histograms, allowing one to multiply
select a specific histogram (sampling with replacement).15

Hence, in contrast to the bootstrapping of trajectories based
on umbrella histograms (see previous paragraph), we do not
generate new trajectories and histograms. To ensure that the
bootstrapped histograms span the whole reaction coordinate,
that is, that no gaps between the bootstrapped histograms
are generated, the histograms can be grouped along the
reaction coordinate, and histograms can be bootstrapped
within each group separately. We show that, given limited
sampling, bootstrapping of complete histograms allows for
a more accurate estimation of the uncertainty (see Results).

Bayesian Bootstrapping of Complete Histograms. As
pointed out in the previous paragraph, introducing groups
of histograms (and subsequent bootstrapping only within each
group) avoids gaps along the reaction coordinate between
bootstrapped histograms, but an appropriate choice for the
number of histograms per group may be unclear. Therefore,
we propose a method related to the so-called Bayesian
bootstrap that avoids the introduction of groups of histograms
by instead assigning random weights to all histograms within
each bootstrap.

When applying the usual bootstrap on individual observa-
tions, n observations are selected with replacement from the
given n observations ai (i ) 1, ..., n), where the probability
of selecting any of the specific observations equals 1/n.
Hence, all observations ai are selected with equal probability.
Rubin proposed an alternative procedure, known as the
Bayesian bootstrap, that instead assigns random weights ωi

to each observation.16 Then, each observation ai is selected
with probability ωi (instead of 1/n), or alternatively, the
weights ωi are assigned to the observations when computing
the observable A(a1, ..., an) from the observations. According
to the Bayesian bootstrap, the weights ωi are generated as
follows: draw n - 1 uniform random variables between 0
and 1, and let u(1), u(2), ..., u(n-1) denote their values in
increasing order. In addition, let u(0) ) 0 and u(n) ) 1. The
random weights are then given by the gaps between two
consecutive random numbers, i.e., ωi ) u(i) - u(i-1), where
i ) 1, ..., n. For each bootstrap turn, new random weights
are generated.

Note that the bootstrapping of complete histograms
(compare previous section) is equivalent to the assignment
of random weights to the histograms, if these random
weights are an integer multiple of 1/Nw. Here, we suggest
the assignment of continuous random weights to the
histograms, and selection of the weights according to the
Bayesian bootstrap. That procedure resembles the boot-
strapping of compete histograms in the sense that it
considers only complete histograms as independent data
points and thus is expected to yield realistic error estimates
in the presence of long autocorrelations. However, because
the continuous weights ωi are (almost) never exactly zero,
it excludes the possibility of generating gaps along the
reaction coordinate in the bootstrapped histogram set. The
WHAM procedure with weighted histograms was imple-
mented by multiplying the inverse statistical inefficiencies
gi
-1 in eq 2 by ωi.

x(0) ) R0 (5)

x(t + 1) ) ax(t) + √1 - a2Rt+1 (6)

x'(t) ) Ch(�b(t)) ≡ ∫-∞

�b(t)
h(�′) d�′ (7)
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Autocorrelations. The normalized autocorrelation function
of umbrella window i is given by

where �i(t) denotes the reaction coordinate during simulation
i, σ�,i

2 ) 〈(�i(t) - 〈�i〉)2〉 is the respective variance, and 〈...〉
represents the average over the simulation frames. Following
the nomenclature in Kumar et al.,3 the integrated autocor-
relation time (IACT) of window i is defined by

The autocorrelation function derived from a short umbrella
simulation is typically very noisy. Sophisticated methods to
compute the IACT such as fitting of a single or double
exponential to Ri(∆t) or any kind of binning analysis turned
out to be too unstable for the present purpose. Note that the
IACT should be computed automatically for hundreds (or
thousands) of possibly poorly converged Ri(∆t)’s. Therefore,
we chose to compute τi,int directly via eq 9 but carried out
the summation only until Ri(∆t) dropped under a predefined
threshold of 0.05.

Simulation Details. Test simulations were carried out
using the GROMACS simulation suite.11 As a test system,
we have computed the PMF along the distance between two
methanol molecules in a vacuum. These simulations were
set up by placing one methanol molecule in the origin and
placing the second molecule at the distance �i

c of the
corresponding umbrella window. The molecules were ran-
domly rotationally oriented. In addition, the initial distance
between the two molecules was varied randomly by (σu,
where σu ) �(kBT/K) denotes the width of the umbrella
histogram (assuming a flat underlying PMF). Here, K ) 800
kJ/mol/nm2 is the umbrella force constant, kB is the Boltz-
mann factor, and T is the temperature. The sampling was
carried out using a stochastic dynamics integrator (τ ) 0.07
ps, T ) 300 K), with an independent random seed for each
simulation. Lennard-Jones and electrostatic interactions were
computed in direct space without a cutoff. Bonds were
constrained using LINCS,17 allowing a time step of 2 fs.
The umbrella positions were recorded every 10th step during
simulations with a total simulation time of 50 ps and were
recorded at every step during simulations with a simulation
time of 4 ps. Methanol parameters were taken from the
GROMOS96 force field.18 The methods applied to compute
the PMF for the Rhesus channel Rh50 and for the lipid
membrane have been published elsewhere.19

Results and Discussion

Error Analysis for a Model System and a Lipid
Membrane PMF. As a test system, we compute the PMF
of the center-of-mass distance between two methanol mol-
ecules in a vacuum. Such a simple system allows us to carry
out the complete set of umbrella simulations many times and
hence to accurately compute the “true” statistical uncertainty
of the PMF. Subsequently, we test whether the bootstrapping

procedures are able to estimate the “true” uncertainty using
only the data from one set of umbrella simulations.

As a reference for the following discussion, Figure 1A
presents the converged PMF and Figure 1B, the respective
umbrella histograms. Here, each of the 14 umbrella windows
was simulated for 3 ns, yielding well-converged statistics
as visible from the Gaussian histograms at a great distance
�. The PMF at � ) 1.5 nm was chosen as a reference point
and defined to zero. To arrive at a flat PMF at a great
distance, the PMF was corrected by kBT ln(4π�2), which
removes the entropic decrease in the PMF because of the
increase in the number of configurations on a sphere of ra-
dius �.20

To assess whether the bootstrapping procedure provides
a reliable error estimate, we have repeatedly computed the
same PMF using limited statistics, with each umbrella
window simulated for 50 ps. The nonconverged histograms
of one set of these umbrella simulations is shown in Figure
2A. The complete set of umbrella simulations was carried
out 50 times with different initial random seeds for the
stochastic forces and different initial orientations and veloci-
ties of the methanol molecules, yielding 50 independent
estimates for the PMF (Figure 2B). The uncertainty (67%
confidence interval) for a single set of umbrella simulations
as derived from these 50 PMFs is plotted as a green curve
in Figure 2D. Note that the error at z ) 1.5 nm equals zero
since all PMFs were defined to zero at that point. Next, an
autocorrelated bootstrapped trajectory was generated for each
of the histograms plotted in Figure 2A using eqs 5, 6, and
7, allowing one to compute a new “hypothetical” estimate
for the PMF based on the umbrella histograms. That
bootstrapping procedure was repeated 200 times, yielding
200 bootstrapped PMFs (Figure 2C, colored curves). As
expected, the bootstrapped PMFs substantially differ, in line
with the 50 PMFs calculated from independent simulations
(Figure 2B). The standard deviation computed from the
bootstrapped PMFs (Figure 2D, black) is in good agreement
with the uncertainty calculated from the 50 independent

Ri(∆t) )
〈(�i(t) - 〈�i〉)(�i(t + ∆t) - 〈�i〉)〉

σ�,i
2

(8)

τi,int ) ∑
∆t)1

∞

Ri(∆t) (9)

Figure 1. (A) Converged PMF (black curve) of the center of
mass distance between two methanol molecules in vacuum.
(B) Converged umbrella histograms, each derived from a 3-ns
simulation.
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simulations (Figure 2D, green), demonstrating that the
bootstrapping procedure provides a reliable error estimate
without the requirement to carry out new independent
simulations. Alternatively, the uncertainty was estimated
from trajectories that were bootstrapped from Gaussian
distributions with the average and width taken from the
respective umbrella histogram (Figure 2D, red), yielding
almost identical and hence equally accurate error estimates.

Biomolecular simulations naturally contain long autocor-
relations. The histograms based on short umbrella simulations
may therefore not represent all parts of phase space. In
addition, the IACTs may be severely underestimated since
slow transitions do not occur during the short simulations.

Consequently, bootstrapping trajectories based on these
histograms (in combination with underestimated IACTs) will
underestimate the uncertainty. This fact is demonstrated in
Figure 3A. To emulate umbrella sampling of a biomolecular
system with long autocorrelations, we computed the PMF
of the methanol distance based on 4 ps simulations (using
the first 0.5 ps for equilibration), resulting in highly non-
converged histograms. Ten independent umbrella simulations
were carried out for each of the 14 umbrella window
positions, yielding 140 histograms. The whole set of umbrella
simulations was carried out 100 times, allowing one to
compute the true uncertainty (as one standard deviation) in
the PMF (Figure 3A, green curve). Figure 3A compares the

Figure 2. (A) Nonconverged histograms, each derived from
50 ps simulations. (B) 50 PMFs derived from 50 fully
independent sets of umbrella simulations. (C) PMF (black
curve) derived from the set of nonconverged histograms (A).
Autocorrelated trajectories were bootstrapped from the his-
tograms shown in A 200 times, yielding 200 bootstrapped
PMFs (colored curves in C). (D) Statistical uncertainty calcu-
lated from the 50 independent simulations (green) shown in
B and from the 200 bootstrapped PMFs (black) shown in C.
Alternatively, the uncertainty was estimated from trajectories
that were bootstrapped from Gaussian distributions of the
average and σ taken from the umbrella histograms (red).

Figure 3. Estimating uncertainties in the presence long
autocorrelations. (A) The PMF along the methanol-methanol
distance (not shown) was computed from 140 umbrella
histograms, each derived from a 4 ps simulation. As a
reference, the uncertainty σPMF was computed from 100
independent sets of umbrella simulations (green curve).
Generating bootstrapped trajectories for each umbrella his-
togram leads to an underestimated uncertainty (black curve).
Estimating the uncertainty by bootstrapping complete histo-
grams (red curve) or using the Bayesian bootstrap on
complete histograms (blue curve) yields more accurate error
estimates. (B) PMF for ammonia permeation across a lipid
membrane containing 40 mol % cholesterol. (C) Statistical
uncertainty of the ammonia PMF computed by bootstrapping
trajectories for each umbrella histogram (black curve) and by
(Bayesian) bootstrapping of complete histograms (red and
blue curves).
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true uncertainty to the estimated uncertainty derived from
three different bootstrapping methods. Because the estimated
uncertainties vary slightly between the different sets of
independent umbrella simulations, Figure 3A plots estimated
uncertainties averaged from 15 (of the 100) sets of umbrella
simulations. The uncertainty computed by bootstrapping
trajectories is shown as a black curve, demonstrating that
this procedure greatly underestimates the uncertainty in that
case. The red curve in Figure 3A presents the uncertainty
estimated by bootstrapping complete histograms. Here, the
histograms were grouped into 14 sets of 10 histograms, with
each group containing the 10 histograms at the same umbrella
position. Consequently, 10 histograms were bootstrapped
from each of the 14 sets, and the PMF was computed from
the 140 bootstrapped histograms using WHAM. The whole
procedure was repeated 200 times, providing 200 hypotheti-
cal estimates for the PMF (not shown) and allowing one to
compute the uncertainty using eq 4. As visible from Figure
3A, bootstrapping complete histograms yields a more ac-
curate estimate of the uncertainty, despite the poor sampling
within each umbrella window. The blue curve in Figure 3A
presents the uncertainty estimated using Bayesian bootstrap-
ping of complete histograms, that is, by assigning random
weights to the individual histograms (see Methods). The
Bayesian bootstrap also yields a reasonable error estimate
because the method considers only complete histograms as
independent data points, similar to the bootstrapping of
complete histograms.

For a second comparison between the different bootstrap-
ping methods, Figure 3B presents the PMF for ammonia
permeation across a biological membrane composed of the
lipids POPE and POPC plus 40 mol % cholesterol. The flat
regions at small and large z correspond to the ammonia
molecule in the two bulk water regions above and below
the membrane, whereas the two maxima in the PMF
correspond to the hydrophobic regions of the two membrane
leaflets. The PMF has been computed from 656 histograms
(not shown), each taken from 1 ns of simulation, where the
first 50 ps were removed for equilibration. The initial frames
for the umbrella simulations at a specific z coordinate were
generated by inserting ammonia at various randomly chosen
positions in the membrane plane, justifying the assumption
that the histograms are independent. Figure 3C shows the
estimated uncertainty computed via (i) bootstrapped trajec-
tories (black), (ii) bootstrapping of complete histograms with
12 histograms within each group (red), and (iii) Bayesian
bootstrapping of complete histograms (blue). Method i yields
a very small uncertainty of only 0.5 kJ/mol, whereas methods
ii and iii yield an uncertainty of ∼2 kJ/mol at the main
barriers in the PMF. Because considerable computational
effort is required to compute the PMF in Figure 3B, we
cannot compute the uncertainty from independent sets of
umbrella simulations for this example. However, Figure 3C
suggests that the individual histograms do not represent all
accessible areas of phase space, leading to an underestimated
uncertainty as computed from method i. Presumably, slow
transitions on a multi-nanosecond time scale may affect the
sampling in this case, whereas the autocorrelation analysis
based on the shorter simulations yields spuriously short

IACTs. In contrast to method i, methods ii and iii do not
depend on the accurate computation of the IACTs but only
require the histograms to be independent. Therefore, methods
ii and iii are expected to yield a reliable error estimate in
this case.

To estimate uncertainties in the presence of long (possibly
unknown) autocorrelations, we therefore suggest carrying out
many short umbrella simulations instead of a few long umbrella
simulations, such that each position along the reaction coordinate
is covered by at least several independent histograms. Given
sufficiently many independent histograms, the error can be
estimated using bootstrapping of complete histograms or using
the Bayesian bootstrap of complete histograms.

Effect of Autocorrelations. As visible from the WHAM
equations, eqs 2 and 3, the IACTs cancel if (and only if) the
IACTs are equal in all umbrella windows. In nonhomogeneous
systems, however, that assumption may not hold. An example
would be umbrella simulations for solute permeation across a
lipid membrane or across a protein channel surrounded by bulk
water. Here, the IACTs of windows in the bulk are typically
lower than the IACTs of windows inside the lipid membrane
or inside the protein channel. We found that neglecting the
IACTs may lead to artifacts in particular when computing the
PMF along a periodic reaction coordinate. As an example,
Figure 4A presents a nonconverged PMF for ammonia perme-
ation across the Rhesus protein channel Rh50 from N. europaea
(Figure 4C). The PMF was derived from 365 400-ps histograms,
taken from 500 ps simulations, using the first 100 ps for
equilibration. The simulations were carried out with periodic
boundary conditions, implying that a PMF for solute permeation
should yield the same free energy in the two bulk-water regions
below and above the channel. The black curve in Figure 4A
was computed by a nonperiodic WHAM. The PMF is not
converged, as apparent from the substantial offset of ∼15 kJ/
mol between the two bulk-water regions. To account for the
periodicity of the system, a periodic WHAM assuming equal
IACTs of all umbrella windows could be carried out (red curve).
However, with equal IACTs, the WHAM procedure assigns
equal weights to all histograms and, hence, equally distributes
the offset of 15 kJ/mol along the reaction coordinate to enforce
a periodic PMF. As a consequence, an unphysical slope is
induced in the bulk-water regions of the PMF (|z| > 2 nm). A
more realistic procedure is therefore to compute the IACTs for
each umbrella window and to apply them within WHAM. The
IACT derived by direct integration of the autocorrelation
function for the displacement for each umbrella window is
plotted in Figure 4B as black dots. Because the IACTs cannot
be accurately computed from the limited sampling in the
umbrella windows, we suggest smoothing the IACT along the
reaction coordinate yielding a semiquantitative autocorrelation
measure (Figure 4B, red curve). Whereas the IACTs are small
in bulk water, substantial autocorrelations limit the sampling
within the channel, suggesting that the 15 kJ/mol is a conse-
quence of slow sampling within the channel. The PMF
computed by a periodic WHAM that takes IACTs into account
is shown in Figure 4A as a blue curve. As expected, the PMF
is flat in the bulk-water regions (in agreement with the
nonperiodic WHAM result, black curve), whereas corrections
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were introduced in the less sampled channel region to yield a
periodic PMF.

Converged PMFs for ammonia permeation across the Rh50
channel as well as the biological implications have been
published elsewhere.19

Conclusions

We have presented a new WHAM implementation, termed
g_wham, that is freely distributed with the GROMACS
simulation suite. The g_wham software is easy to use,
flexible, and efficiently implemented. Statistical uncertainties
are quantified using different bootstrap analysis methods: (i)
bootstrapping of hypothetical trajectories based on the
umbrella histograms together with the respective autocor-
relation time, (ii) by bootstrapping complete histograms, or
(iii) by using the Bayesian bootstrap of complete histograms,
that is, by assigning random weights to the histograms. We
have shown that method i provides an accurate error estimate
if (and only if) the histograms are sufficiently converged. If
the histograms are affected by long autocorrelations, as
frequently occurrs in simulations of large biomolecules,
methods ii and iii provide a more accurate error estimate. In
nonhomogeneous systems such as a protein channel or a lipid
membrane surrounded by bulk water, the autocorrelation
times may substantially vary along the reaction coordinate

and thus not cancel from the WHAM equations. Consistent
application of the autocorrelations has here been shown to
yield a more accurate estimate for the PMF in such systems,
in particular when computing a periodic PMF.
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Appendix

g_wham Input Modes. A help file, including all command
line options, is provided by the g_wham tool via the
command g_wham -h. g_wham supports three input modes.
In modes 1 and 2, g_wham reads specific GROMACS files,
These modes are thus convenient for GROMACS users. In
mode 3, g_wham reads only text files and is therefore suitable
for non-GROMACS users as well.

1. With option -it, the user provides a file which contains
the file names of the umbrella simulation run-input files
(GROMACS tpr-files). In addition, with option -ix, the
user provides a file which contains the file names of
the pull position output files (pullx.xvg etc.) written
by the GROMACS mdrun program.

Figure 4. Effect of autocorrelations in a periodic WHAM. (A) Nonconverged PMF of ammonia permeation across the Rhesus
protein channel Rh50 (black). The limited sampling accounts for a substantial offset of ∼15 kJ/mol between the two end points
of the PMF corresponding to the two bulk water regions. A periodic WHAM assuming equal integrated autocorrelation times
(IACTs) accounts for the periodicity of the system (red curve) but induces approximately a linear slope in the complete PMF,
including the well-sampled bulk water regions. Blue curve: PMF derived from periodic WHAM incorporating the calculated IACTs.
The PMFs in the bulk-water regions are almost flat, in accordance with the bulk-water regions in the nonperiodic PMF (black).
(B) IACTs calculated by direct integration of the autocorrelation functions (black dots), and by subsequent smoothing with a
Gaussian filter (red curve). (C) Simulation box of an Rh50 trimer embedded in a lipid membrane and solvated in water and 150
mM electrolyte.
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2. This mode is the same as mode 1, except that the user
provides with option -if a file which contains the file
names of the pull force output files (pullf.xvg etc.)
written by the GROMACS mdrun program.

3. With option -ip, the user provides a file which contains
the file names of the pull output files written by
GROMACS 3 (pdo files). pdo files are text files and
can be generated by non-GROMACS users. Each pdo
file contains a header with the umbrella positions and
force constants, and the body contains the simulation
time versus the displacement of the system with respect
to the umbrella center. The pdo file format (with a
typical header) is explained with the g_wham help file
provided with g_wham -h.

WHAM Options. Default values for the following options
are listed in square brackets:

-min, -max: boundaries of the profile [0,0]
-auto: determine boundaries automatically [yes]
-bins: number of bins used [200]
-temp: temperature in Kelvin [298.15]
-tol: tolerance. The WHAM iterations stop when the

probabilities change less than the tolerance. [10-6]
-b, -e, -dt: specify simulation times in picoseconds (begin,

end, time step) that are used in WHAM [50, infinity, 0]
-cycl: periodic (or cyclic) WHAM [no]
-tab: file name with tabulated potential in the case of

nonharmonic umbrella potentials
Output Control
-o: file name of PMF output file
-hist: file name of histogram output file
-histonly: write histograms and exit [no]
-boundsonly: determine boundaries automatically and exit

[no]
-log: write negative logarithm of the probabilities; that is,

enable output in energy units; otherwise, write probabilities
[yes]

-unit: define energy unit (kJ/mol, kcal/mol, kBT) [kJ/mol]
-zprof0: set profile to zero at this position [0]
-sym: symmetrize profile around � ) 0 (useful for

membranes, for instance) [no]
-v: verbose mode [no]
Autocorrelation Handling
-ac: calculate integrated autocorrelation times (IACTs)

using eqs 8 and 9 and use in WHAM [no]
-acsig: smooth IACTs along reaction coordinate using a

Gaussian filter of width defined here [0]
-ac-trestart: when computing the autocorrelation functions

for �i(t), restart the calculation after the time delay defined
here [1 ps]

-oiact: (smoothed) IACT output file name
-iiact: IACT input file name. If the user prefers to calculate

the IACTs not using g_wham, the IACTs can be provided
to g_wham using this option.

Bootstrapping Control
-bsprof: output file name of all bootstrapped profiles
-bsres: output file name with average and standard deviation

of bootstrapped profiles (that is, the uncertainty of the PMF)
-nBootstrap: number of bootstraps carried out to estimate

the uncertainty (use, e.g., 100) [0]

-bs-method: bootstrap method applied (‘b-hist’, ‘hist’,
‘traj’, or ‘traj-gauss’); Bayesian bootstrapping of complete
histograms, bootstrap complete histograms, bootstrap new
trajectories from the umbrella histograms, or bootstrap new
trajectories from Gaussian distributions with average and
width taken from the respective histogram [b-hist]

-bs-tau: specify integrated autocorrelation time used for
all histograms with bootstrap methods ‘traj’ or ‘traj-gauss’;
if not provided (default), use calculated IACTs (options -ac
and -acsig)

-histbs-block: number of histograms in one group with
bootstrap method ‘hist’; histograms will be bootstrapped only
within each group separately; that procedure avoids gaps
without any histogram data along the reaction coordinate.

-bs-seed: random seed for bootstrapping (-1 generates a
seed) [-1]

-vbs: verbose bootstrapping (output cumulative distribution
functions for each histogram and a histogram file for each
bootstrapped PMF) [no].
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Jógvan Magnus Olsen,† Kęstutis Aidas,‡ and Jacob Kongsted*,†

Department of Physics and Chemistry, UniVersity of Southern Denmark,
CampusVej 55, DK-5230 Odense M, Denmark, and Department of Chemistry, H. C.

Ørsted Institute, UniVersity of Copenhagen, UniVersitetsparken 5,
DK-2100 Copenhagen Ø, Denmark

Received July 8, 2010

Abstract: We present theory and implementation of an advanced quantum mechanics/molecular
mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme.
It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic
medium in a quantum mechanical calculation. The polarizable embedding potential is described
by an atomistic representation including terms up to localized octupoles and anisotropic
polarizabilities. It is generally applicable to any quantum chemical description but is here
implemented for the case of Kohn-Sham density functional theory which we denote the PE-
DFT method. It has been implemented in combination with time-dependent quantum mechanical
linear and nonlinear response techniques, thus allowing for assessment of electronic excitation
processes and dynamic ground- and excited-state molecular properties using a nonequilibrium
formulation of the environmental response. In our formulation of polarizable embedding we explicitly
take into account the full self-consistent many-body environmental response from both ground and
excited states. The PE-DFT method can be applied to any molecular system, e.g., proteins,
nanoparticles and solute-solvent systems. Here, we present numerical examples of solvent shifts
and excited-state properties related to a set of organic molecules in aqueous solution.

1. Introduction

Accurate modeling of excited states and molecular properties
of large molecular samples represents one of the greatest
challenges to modern quantum chemistry. The description
of excited states requires the use of quantum mechanics.
However, in many cases it is not necessary to use a full
quantum mechanical description of the total system. This
is, for example, the case when dealing with a solute-solvent
system or in more general terms a molecule subjected to a
structured environment. In these cases the part of the system
not directly involved in the electronic processes can be
described effectively using, e.g., classical mechanics. Even
though linear scaling techniques are becoming more ad-
vanced and may be used to describe larger and more complex

systems,1 effects due to conformational sampling still persist
and may become more important as the size of the molecular
system is increased. In fact, in many cases it is mandatory
to include effects of nuclear dynamics in combination with
the electronic structure in order to pursue a direct comparison
with experimental data. Thereby, formulation of accurate
effective Hamiltonian methods becomes of crucial impor-
tance. This should particularly be seen in the light of recent
trends aiming at a complete quantitative description of
biological functions with the necessary step of bringing
quantum chemistry into the life sciences.2

With the aim of describing large molecular systems we
present in this paper a focused model based on the quantum
mechanics/molecular mechanics (QM/MM) approach using
a fully self-consistent polarizable embedding scheme which
we denote the polarizable embedding (PE) model. The
electrostatic embedding potential, i.e., the permanent charge
distribution of the environment, is represented by a multi-
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center multipole expansion. The expansion centers are
defined to be located either at the atomic nuclei of the
molecules defining the environment or at the atomic nuclei
and bond midpoints. The latter description would, in
principle, lead to a more accurate representation of the
embedding potential with an improved radius of convergence
for the multipole model. The electrostatic embedding po-
tential only accounts for the permanent charge distribution
of the environment, and in order to account for many-body
induction effects, i.e., the polarization of the environment
both internally and by the quantum mechanical core, we
assign a set of localized anisotropic dipole polarizability
tensors at the expansion centers, giving rise to an induced
charge distribution in the environment. The latter is repre-
sented in terms of induced dipoles which are determined on
the basis of classical response theoretical methods.3 The
localized multipoles and polarizabilities are determined using
quantum mechanical methods. In this paper we show that a
careful representation of the permanent and induced poten-
tials by multipoles and polarizabilities, respectively, leads
to a very accurate mid- and long-range electrostatic potential
as compared to quantum mechanical data. The PE model is
generally applicable but here it is implemented for the case
of Hartree-Fock and Kohn-Sham density functional theory,
which we denote the PE-HF and PE-DFT methods. The
functional form of the polarizable embedding potential
resembles that of the EFP method by Gordon et al.;4-6

however, the strength of our model is the ability to describe
excited states on the same footing as ground states. This is
achieved through a formulation of the PE model within the
context of time-dependent quantum mechanical response
theory. Pertinent to our formulation of polarizable embedding
within response theory is the self-consistent many-body
environmental response. Here it is important to emphasize
that the response of the environment due to the differential
change between the ground- and excited-state electron
density is fully self-consistent, whereas this is approximated
in other similar implementations.7-10 The consequences of
typical approximations as compared to the inclusion of the
fully self-consistent environmental response is investigated
with numerical examples. The PE model is presented and
implemented up to and including quadratic response, with
the possibility of straightforwardly extending it to higher
order response. This allows for evaluation of vertical
electronic excitation energies and the related one- and two-
photon transition moments. Furthermore, electronic second-
and third-order ground-state molecular properties, such as
static and dynamic (hyper)polarizabilities, are available, as
are excited-state first-order molecular properties. In addition,
magnetic properties, such as magnetizabilities, nuclear
shielding constants, and spin-spin coupling constants, may
also be computed, using gauge invariant atomic orbitals
(GIAOs) when needed.

Nuclear dynamics is in the present method considered by
performing classical molecular dynamics (MD) simulations.
Here we proceed in a sequential manner; i.e., we first perform
the MD simulations and then, using an appropriate number
of configurations extracted from the MD simulations, simu-
late the electronic structure. In this respect we neglect the

effect of the electronic structure on the configurations, and
the accuracy of our approach relies first of all on the use of
an accurate classical potential to be used for the MD
simulations.

Inclusion of explicit polarization into force field methods
have in recent years received much attention.11 The current
status is that polarization may contribute significantly and
specifically to specific solvation process. For example,
polarization causes a significant increase in the dipole
moment of a water molecule in the liquid state and may in
addition constitute as much as 50% of the total interaction
energy.12 An important point here is to be able to calculate
all properties characterizing the intermolecular interactions
by quantum mechanical methods.

In the present paper the focus is on the effects from a
water solvent on the excitation energies of a set of organic
molecules, i.e., the solvent shifts. We emphasize that our
computational method is not restricted to consideration of
solute-solvent systems. However, predictions and rational-
izations related to solvent shifts have, for a long time, been
a very active and important research area in chemistry13-17

and serve here as a valuable benchmark for this newly
developed computational method. Furthermore, solvent shifts
are also highly relevant to, e.g., the studies of biological
samples. In fact, certain organic molecules are frequently
used as molecular chameleons in order to characterize the
degree of polarity of an environment. This is possible since
a change in the environmental polarity will lead to a
differential stabilization of the ground and excited states of
the probe molecule, and thereby to a change in the energy
difference between these two states. Consequently, variations
in the intensity and especially the position of the absorption
or emission spectra becomes a direct measure of the polarity
and related specific interactions between the probe and the
environment. The key to an accurate rationalization and
modeling of, e.g., such chameleons is a flexible computa-
tional model formulated toward excited states of large
molecular samples.

2. Theory

Below we detail the theoretical aspects of the PE model and
its formulation within Kohn-Sham density functional theory
and time-dependent response theory.

2.1. Ground-State Polarizable Embedding. The PE
model presented in this work uses the QM/MM approach18-22

to describe the interactions between the environment and the
central molecular system. We use an advanced force field
representation of the environment which is derived by
quantum mechanical calculations. Thus, we assign a multi-
center multipole expansion to each molecule in the surround-
ing environment to represent the electrostatic embedding
potential. Furthermore, we place localized anisotropic
dipole-dipole polarizability tensors on all expansion centers
to allow polarization of the electrostatic embedding potential.
This enables us to formulate the PE model where the ground-
state electron density of the molecular core is optimized while
simultaneously taking into account the explicit electrostatic
interactions and many-body induction effects of the sur-
rounding environment in a self-consistent manner. All other
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interactions, mainly short-range repulsion and dispersion, can
be modeled with a standard 6-12 Lennard-Jones (LJ)
potential. The LJ potential does not depend on electronic
coordinates and will therefore not affect the electron density
of the molecular core.

We begin by describing the general PE model and will
later apply it to density functional theory (DFT). Our model
focuses on a central molecular system which we will refer
to as the QM core. The effects from interactions with the
environment are described through the PE potential. The
energy of the QM core can thus be separated into two terms

where EQM is the energy of the isolated QM core and EPE is
the energy due to the interactions with the PE potential. The
interaction energy, EPE, is given by

where EPE
es is the electrostatic interaction energy, EPE

ind is the
induction energy, and EPE

LJ is the energy due to the LJ
interactions. The electrostatic contribution is composed of
interactions between the permanent multipoles in the envi-
ronment and the nuclei and electrons in the QM core; i.e.,

Here S is the total number of sites in the environment and K
is the maximum order of the multipole expansion assigned
to the molecules in the environment. The quantities M and
N are the numbers of nuclei and electrons, respectively, in
the QM core. The T(k) factors are the interaction tensors,
defined as Tab

(k) ) ∇k[1/(|rb - ra|)], and Qs
(k) is the kth order

multipole moment assigned to the sth site in the environment;
e.g., Qs

(0) ) qs, Qs
(1) ) µs, and so on.

The induction energy due to the polarization of the
environment both internally and by the QM core is given
by

where µind is a 3S-dimensional vector which contains the
full set of induced dipole moments, i.e., µind ) [µ1

ind, µ2
ind,

..., µS
ind]T, and Fnuc, Felec, and Fes are the corresponding

electric field vectors, which contain the electric fields from
the nuclei and electrons in the QM core and the permanent
multipole moments in the environment at the positions of
the induced dipoles. An induced dipole moment is deter-
mined by the total electric field which is the sum of the fields
from the nuclei and electrons in the QM core and the
permanent multipoles and all the other induced dipoles in
the environment. The set of induced dipoles can be conve-
niently determined as a simple matrix-vector multiplication3

where B is the symmetric (3S × 3S)-dimensional classical
response matrix connecting the electric fields and the set of
induced dipoles. The response matrix is defined as

where the polarizability tensors are along the diagonal and
the off-diagonal elements are the dipole-dipole interaction
tensors.

The PE model is applied to DFT by constructing an
effective Kohn-Sham (KS) operator; i.e.,

where f̂KS is the ordinary vacuum Kohn-Sham operator and
ν̂PE is the PE potential operator. The contribution to the
effective KS operator due to the polarizable environment,
i.e., the PE potential operator ν̂PE, is determined by mini-
mization of the total energy functional with respect to the
electron density. Therefore, we only need to consider terms
that depend on the electron density, i.e., the last term in eq
3, where the electron charge is replaced by an integral over
the density, and eq 4 which has a density dependence through
the electric field from the electrons both explicitly and
through the induced dipole moments (eq 5). Thus, the PE
contribution in second quantized (SQ) form is found to be

where the subscripts pq indicate a matrix element of the
corresponding operator in the KS orbital basis. The excitation
operator Êpq is expressed in terms of creation and annihilation
operators, i.e., Êpq ) apR

† aqR + ap�
† aq�. The first term in eq 8

contains the electrostatic embedding potential introduced here
in terms of a set of localized multipole moments, while the
second term accounts for polarization of the environment
by the electron density. The induced dipole moments are
updated in each self-consistent field (SCF) iteration, thus
leading to a fully self-consistent treatment of the polarization.
The derivation of the PE-HF method proceeds in a similar
manner with the construction of an effective Fock operator.

2.2. Polarizable Embedding for Excited States. In this
work we will only give an overview of the derivation of the
linear and quadratic quantum mechanical response functions
with emphasis on the contributions that are due to the PE
potential. For a detailed discussion of the implementation
of linear and quadratic response theory in vacuum, we refer
the reader to the work by Sałek et al.23

The starting point for the derivation of the response
functions is to consider the time dependence of an expecta-
tion value of a time-independent operator Â. It can be
expanded in orders of a time-dependent perturbation

where the first term on the right-hand side is the time-
independent expectation value and the second and third terms

EPE-QM ) EQM + EPE (1)

EPE ) EPE
es + EPE

ind + EPE
LJ (2)

EPE
es ) ∑

s)1

S

∑
k)0

K
(-1)k

k! ( ∑
m)1

M

ZmTms
(k) - ∑

i)1

N

Tis
(k))Qs

(k) (3)

EPE
ind ) -1

2
µind · (Fnuc + Felec + Fes) (4)

µind ) B(Fnuc + Felec + Fes) ) BF (5)

B ) (r1
-1 T12

(2) · · · T1S
(2)

T21
(2) r2

-1 ··· l
l ···

··· T(S-1)S
(2)

TS1
(2) · · · TS(S-1)

(2) rS
-1

)-1

(6)

f̂eff ) f̂KS + ν̂PE (7)

ν̂PE ) ∑
s)1

S

∑
k)0

K
(-1)(k+1)

k!
Qs

(k) ∑
pq

Ts,pq
(k) Êpq -

∑
s)1

S

µs
ind(F[F]) ∑

pq

Ts,pq
(1) Êpq (8)

〈t|Â|t〉 ) 〈t|Â|t〉(0) + 〈t|Â|t〉(1) + 〈t|Â|t〉(2) + ... (9)
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describe the linear and quadratic response to the perturbation,
respectively. The Fourier representation of the linear and
quadratic response is given by

where 〈〈Â;V̂ω〉〉ω and 〈〈Â;V̂ω1,V̂ω2〉〉ω1,ω2 are the linear and
quadratic response functions, respectively, and V̂ω is a Fourier
transformed perturbation operator; i.e., V̂(t) ) ∫V̂ω exp(-iωt)
dω. We use an exponential parametrization of the time
evolution of the reference Kohn-Sham determinant; i.e., |t〉
) exp(-κ̂(t))|0〉, where |0〉 is the unperturbed Kohn-Sham
determinant and κ̂(t) is the anti-Hermitian one-electron
operator defined as κ̂(t) ) ∑rs κrs(t)Êrs.

The response functions are derived using the Ehrenfest
theorem, which can be written as24

where Q̂ is a general one-electron time-independent operator
which we will define as the vector q̂ containing the excitation
operators Êpq. Equation 12 is then expanded in a Baker-
Campbell-Hausdorff (BCH) expansion, and perturbation
expansions of the time evolution operator κ̂(t) and the KS
Hamiltonian Ĥ(t) are inserted. Terms that are first and second
order in the perturbation are collected and used to derive
the linear and quadratic response functions, respectively, in
the frequency domain. The SQ form of the expanded time-
dependent Kohn-Sham Hamiltonian is

where hpq is an integral over the kinetic energy and nuclear-
attraction operators, jpq

(n) is an nth-order Coulomb integral and
νxc,pq

(n) is an nth-order integral over the exchange-correlation
potential. Finally, the integral νPE,pq

(n) is an nth-order integral
over the PE potential which gives the contribution from the
polarizable environment.

2.2.1. Linear Response. The linear response function
〈〈Â; V̂ω〉〉ω for the property Â perturbed by a periodic
perturbation V̂ω with associated frequency ω is given by

where A ) 〈0|[q̂,Â]|0〉 and the time evolution parameters
are collected in the vector Kω. The time evolution parameters
are determined from the matrix equation

which is derived from the Ehrenfest theorem in eq 12. Here
it has been used that κ̂ω ) q̂†Kω. The E matrix is defined
through

The generalized overlap matrix is defined as

and the perturbation vector is given by

We observe that explicit contributions from the PE
potential only enter the linear response function through the
E matrix as

Using one-index transformed integrals,25 we define a new
set of operators

where the induced dipole moments are determined from eq
5 and the transformed electric field is evaluated according
to

Finally, we can express the PE contribution to the linearly
transformed E matrix as

The Q̂1
ω operator gives the zero-order PE contribution to the

linear response which corresponds to a static environment;
i.e., the environment does not respond to the applied
perturbation. The Q̂2

ω operator, on the other hand, describes
the dynamical response of the environment due to the
perturbation. It is important to note that this is the fully self-
consistent many-body environmental response without ap-
proximations as opposed to other similar implementations7,8

where the dynamical response is approximated by using a
block-diagonal classical response matrix (eq 6) in the
response calculations. The approximated block-diagonal
response matrix includes the polarizability tensors but
neglects the off-diagonal interaction tensors, whereas we
include the full response matrix. The consequences of the
approximation is investigated in section 5.2.

2.2.2. Quadratic Response. The quadratic response func-
tion 〈〈Â;V̂ω1,V̂ω2〉〉ω1,ω2 for the property Â perturbed by two
periodic perturbations V̂ω1 and V̂ω2 with associated frequen-
cies ω1 and ω2, respectively, is given by

where the perturbation vector is given by

〈t|Â|t〉(1) ) ∫ 〈〈Â;V̂ω〉〉ω exp(-iωt) dω (10)

〈t|Â|t〉(2) ) 1
2 ∫∫ 〈〈Â;V̂ω1, V̂ω2〉〉ω1,ω2

exp(-i(ω1 +

ω2)t) dω1 dω2 (11)

〈0|[Q̂, exp(κ̂(t))(Ĥ(t) + V̂(t) - i
d
dt) exp(-κ̂(t))]|0〉 ) 0

(12)

Ĥ(t) ) ∑
n

Ĥ(n) ) ∑
n

∑
pq

fpq
(n)Êpq ) ∑

n
∑
pq

(δ0nhpq +

jpq
(n) + νxc,pq

(n) + νPE,pq
(n) )Êpq (13)

〈〈Â;V̂ω〉〉ω ) -A†Kω (14)

(E - ωS)Kω ) Vω (15)

EKω ) -〈0|[q̂, [κ̂ω, Ĥ0] + Ĥω]|0〉 (16)

S ) 〈0|[q̂, q̂†]|0〉 (17)

Vω ) 〈0|[q̂, V̂ω]|0〉 (18)

EPEK
ω ) -〈0|[q̂, [κ̂ω, ν̂PE

0 ] + ν̂PE
ω ]|0〉 (19)

Q̂1
ω ) [κ̂ω, ν̂PE

0 ] ) ν̂PE
0 (Kω) (20)

Q̂2
ω ) ν̂PE

ω ) -∑
s)1

S

µs
ind(F̃ω)T̂s

(1) (21)

F̃ω ) 〈0|[κ̂ω, T̂s
(1)]|0〉 ) 〈0|T̂s

(1)(Kω)|0〉 (22)

EPEK
ω ) -〈0|[q̂, Q̂1

ω + Q̂2
ω]|0〉 (23)

〈〈Â;V̂ω1, V̂ω2〉〉ω1,ω2
) KA†

Vω1,ω2 + P̂12〈0|[κ̂ω1, [κ̂ω2, Â]]|0〉
(24)
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Here P̂12 is the idempotent symmetrizer defined through
P̂12A(ω1,ω2) ) (1/2)[A(ω1,ω2) + A(ω2,ω1)]. Furthermore, we
have used that the second-order density matrix elements can
be separated into components due to either first- or second-
order parameters such that the Hamiltonian can be similarly

separated; i.e., Ĥω1,ω2 ) Hĵω1,ω2 + Hĉω1,ω2. The time evolution
parameters are determined by solving three linear response
equations

The explicit PE contributions to the quadratic response
function enter the E matrix and the Vω1,ω2 vector. Contribu-
tions that appear in the E matrix are analogous to the linear
response case; i.e.,

where

The induced dipoles are calculated using eq 5 and the
transformed electric field is given by

Contributions to the perturbation vector are obtained from
eq 25; i.e.,

which we can rewrite to a more convenient form by defining
the following set of operators:

Here the perturbed electric field F̃ω2 is defined in eq 22 and
F̃ω1,ω2 is defined as

The induced dipole moments are determined from eq 5 as
before. Using the newly defined operators, we obtain the PE
contribution to the perturbation vector as

Just as in the linear response case there are terms, here it is
Q̂1

ω1,ω2 and Q̂3
ω1,ω2, that contain the zero-order PE potential

operator which also here give the contributions to the
response function that arise from a static environment. All
the other contributions, i.e., Q̂2

ω1,ω2, Q̂4
ω1,ω2, and Q̂5

ω1,ω2, account
for the dynamical response of the environment due to the
periodic perturbations.

3. Implementation

The presented PE-DFT method has been implemented in a
developmental version of the Dalton program.26 The imple-
mentation also trivially includes the PE-HF method due to
the nature of the DFT implementation in the Dalton program.
The electrostatic part is currently able to use permanent
multipoles up to and including octupoles. The implementa-
tion includes the use of anisotropic dipole-dipole polariz-
ability tensors leading to induced dipole moments which are
calculated using either a direct or an iterative approach. In
the direct approach, which is the default, we calculate the
classical response matrix (eq 6) explicitly and store it on
disk. The induced dipoles are subsequently calculated using
a simple matrix-vector multiplication. This is the most
efficient and fastest method; however, for calculations on
very large molecular systems and/or on computers with low
memory, where it is not possible to form the response matrix
explicitly, the iterative approach becomes useful because of
very low memory requirements. The iterative approach per
default uses the Jacobi method to calculate the induced dipole
moments. To avoid the so-called “polarizability catastrophe”,
we have added the option to use modified dipole interactions
according to the model by Thole.27,28

The implementation of the contributions to the linear and
quadratic response functions is based on the work by Sałek
et al.,23 who implemented DFT and DFT response functions
in the Dalton program. Thus, our approach was to add the
relevant contributions due to the PE potential to the existing
DFT response code. The contributions we considered are

Vω1,ω2 ) P̂12(〈0|[q̂, [κ̂ω1, [κ̂ω2, Ĥ0]]]|0〉 +

ω2〈0|[q̂, [κ̂ω1, κ̂ω2]]|0〉 + 2〈0|[q̂, [κ̂ω1, Ĥω2 + V̂ω2]]|0〉 +

〈0|[q̂, Hĵω1,ω2]|0〉) (25)

KA†
(E - (ω1 + ω2)S) ) A† (26)

(E - ω1S)Kω1 ) Vω1 (27)

(E - ω2S)Kω2 ) Vω2 (28)

KA†
EPE ) -〈0|[q̂, Q̂1

ω1,ω2 + Q̂2
ω1,ω2]|0〉 (29)

Q̂1
ω1,ω2 ) [κ̂A†

, ν̂PE
0 ] ) ν̂PE

0 (KA†
) (30)

Q̂2
ω1,ω2 ) νd̂PE

ω1,ω2 ) -∑
s)1

S

µs
ind(F̃ω1,ω2)T̂s

(1) (31)

F̃ω1,ω2 ) 〈0|[κ̂A†
, T̂s

(1)]|0〉 ) 〈0|T̂s
(1)(KA†

)|0〉 (32)

VPE
ω1,ω2 ) P̂12(〈0|[q̂, [κ̂ω1, [κ̂ω2, ν̂PE

0 ]]]|0〉 +

2〈0|[q̂, [κ̂ω1, ν̂PE
ω2]]|0〉 + 〈0|[q̂, νĵPE

ω1,ω2]|0〉) (33)

Q̂3
ω1,ω2 ) P̂12[κ̂

ω1, [κ̂ω2, ν̂PE
0 ]] ) P̂12ν̂PE

0 (Kω2,Kω1) (34)

Q̂4
ω1,ω2 ) 2P̂12[κ̂

ω1, ν̂PE
ω2]

) -2P̂12 ∑
s)1

S

µs
ind(F̃ω2)[κ̂ω1, T̂s

(1)]

) -2P̂12 ∑
s)1

S

µs
ind(F̃ω2)T̂s

(1), (Kω1)

(35)

Q̂5
ω1,ω2 ) P̂12νĵPE

ω1,ω2

) -P̂12 ∑
s)1

S

µs
ind(F̃ω1,ω2)T̂s

(1) (36)

F̃ω1,ω2 ) 〈0|[κ̂ω1, [κ̂ω2, T̂s
(1)]]|0〉 ) T̂s

(1)(Kω2,Kω1) (37)

VPE
ω1,ω2 ) 〈0|[q̂, Q̂3

ω1,ω2 + Q̂4
ω1,ω2 + Q̂5

ω1,ω2]|0〉 (38)
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presented in eqs 23, 29, and 38. However, terms which
contain zero-order PE contributions ν̂PE

0 , i.e., the Q̂1
ω operator

(eq 20) and the Q̂1
ω1,ω2 and Q̂3

ω1,ω2 operators (eqs 30 and 34),
are accounted for via the effective zero-order Hamiltonian.
In the case of a nonpolarizable environment these are the
only terms that contribute since the other terms account for
the induced polarization in the environment due to the applied
perturbation. The dynamic response of the environment in
the linear response part is accounted for by the Q̂2

ω operator
(eq 21) which is formed by first calculating the transformed
electric field according to eq 22 and subsequently updating
the induced dipoles via eq 5 using the classical response
matrix from eq 6 which has been stored on disk during the
ground-state optimization. The Q̂4

ω1,ω2 and Q̂5
ω1,ω2 operators

(eqs 35 and 36) in the case of quadratic response are
constructed in a similar manner using eqs 32 and 37 for the
transformed electric fields.

4. Computational Details

To illustrate the capabilities of the implemented PE-DFT
method, we here consider the UV/vis vertical absorption
energies of a range of organic compounds in aqueous
solution. In particular, we have computed the lowest nf π*
excitation energy of acetone and acrolein as well as the
lowest πf π* excitation energy of acrolein, pyridine, uracil,
coumarin 151, and coumarin 153. To model nuclear dynami-
cal effects, we performed classical MD simulations, using a
polarizable force field, of each solute in an aqueous environ-
ment in order to extract a number of statistically uncorrelated
solute-solvent configurations. These configurations were
then subjected to the PE-DFT calculations where the solute
is treated using DFT and the solvent molecules are repre-
sented by a PE potential. The excitation energy in solution
is evaluated as the statistical average over the molecular
configurations. The solvent shift of the excitation energy is
defined as the difference between the excitation energy in
solution and in vacuum.

4.1. Molecular Structures, Force Fields, and MD
Simulations. In this work, we used the molecular configura-
tions of acetone, s-trans-acrolein, and uracil in aqueous
solution derived in our previous studies.17,29,30 However, the
computational procedure to obtain the solute-solvent con-
figurations for the rest of the considered molecular probes
follows the same strategy. The solvated geometries of
pyridine and coumarin 151 were obtained from geometry
optimizations using the B3LYP exchange-correlation func-
tional31 and the aug-cc-pVTZ basis set32 along with the
integral equation formalism PCM model33 to account for bulk
solvent effects. For coumarin 153 we used the same method
but the aug-cc-pVDZ basis32 due to cost-effectiveness, and
we only considered the lowest energy conformation as
obtained from our PCM based test calculations. The same
methods were utilized to derive the molecular geometries in
vacuum. The Gaussian 03 program34 was used for all
geometry optimizations.

The force fields used in the MD simulations consist of
partial point charges, isotropic polarizabilities, and LJ
parameters. The charges were calculated by fitting to the
quantum-mechanical electrostatic potential according to the

CHelpG algorithm35 at the B3LYP/aug-cc-pVTZ level for
pyridine and coumarin 151, and the B3LYP/aug-cc-pVDZ
level for coumarin 153 in vacuum using the Gaussian 03
program.34 To model induction interactions, we assigned
isotropic polarizabilities to the atomic sites of the solutes.
The distributed polarizabilities were computed using the
LoProp method36 available in the Molcas program37 at the
B3LYP/aug-cc-pVTZ level for pyridine and coumarin 151
and the B3LYP/aug-cc-pVDZ level for coumarin 153. The
Dunning basis sets were recontracted so as to be of atomic
natural orbital type as required by the LoProp method. The
LJ parameters for pyridine were taken from ref 38. For both
coumarin molecules we used the LJ parameters from the
optimized potential for liquid simulations (OPLS) force field
given in ref 39, except for the amino group in coumarin 151
where we used the OPLS parameters from ref 40. The water
molecules were modeled using the polarizable force field of
Ahlström et al.,41 which represents a water molecule by three
atomic point charges and an isotropic molecular polarizability
located at the center of mass. The internal geometry of the
water molecules was fixed to ROH ) 0.9572 Å and ∠HOH
) 104.49°. The geometries of the solvated molecules and
force field parameters for pyridine, uracil, coumarin 151, and
coumarin 153 as used in the MD simulation are available as
Supporting Information.

The MD simulations of a rigid solute molecule, i.e., either
pyridine, coumarin 151, or coumarin 153, and 511 rigid water
molecules were performed within the NVT ensemble at the
temperature of 298.15 K. The cubic box length was always
set so as to reproduce the experimental density of liquid
waters24.91, 25.05, and 25.12 Å for pyridine, coumarin 151
and coumarin 153, respectively. The velocity Verlet integra-
tion algorithm was employed with the time step of 2 fs along
with periodic boundary conditions. The electrostatic and LJ
interactions were truncated at half of the box length, and
the reaction field correction was applied beyond this cutoff.
The induced dipole moments were recalculated every third
time step with the relative tolerance of 10-7. In addition,
the linear damping of the dipole-dipole interactions was
employed.28 Lorentz-Berthelot rules were applied for the
LJ interactions of unlike atoms.42 The system was equili-
brated for 200 ps, and the molecular configurations were
recorded every 10th ps during the production run of 1.2 ns.
We thus have 120 molecular snapshots from each of the MD
runs to use in the PE-DFT calculations. All MD simulations
were performed using the Molsim software.43

4.2. Electronic Structure Calculations. We used the
CAM-B3LYP hybrid exchange-correlation functional44 to
compute the excitation energies. This functional exhibits
improved long-range behavior which is due to the splitting
of the 1/r operator into short- and long-range contributions
in the exact HF exchange term. The CAM-B3LYP functional
has been shown to provide improved results for long-range
properties including excitation energies.44-46 Furthermore,
we recently demonstrated that the CAM-B3LYP based
solvent shifts of the πf π* type excitation energies are more
reliable as compared to the corresponding B3LYP results.17,30

The parametrization of the CAM-B3LYP functional as
proposed in the original work44 was used. For all molecules,
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except coumarin 153, the aug-cc-pVDZ basis set was used
in the calculations of excitation energies, which is adequate
for local nf π* and πf π* excitation energies.17,30,47 A
smaller 6-31++G* basis48 was used in the calculations on
coumarin 153.

To model the solvent molecules, we used PE potentials
based on a hierarchy of force fields computed using the
LoProp approach.36 The force field parameters, i.e., multipole
moments and polarizabilities, were derived at the B3LYP/
aug-cc-pVTZ level of theory in vacuum using the Molcas
program. In this work we use the designation MXPY for the
force fields, where X denotes the highest order of the
multipole moments and Y indicates whether it includes
isotropic (Y ) 1) or anisotropic (Y ) 2) polarizabilities. All
these parameters are attributed to the atomic sites of the water
molecules. In addition to the MXPY force fields we also used
a force field denoted M2P2BM, which includes multipoles
up to quadrupoles and anisotropic polarizabilities assigned
to both atomic sites and bond midpoints. Furthermore, we
derived a series of force fields using the PCM model which
we denote MXPCM. In this case the induction effects are
incorporated implicitly into the multipole moments. The
parameters for these force fields were calculated at the
B3LYP/aug-cc-pVTZ/PCM level. Finally, we used the Ahl-
ström force field presented in the previous section and the
standard nonpolarizable TIP3P force field due to Jorgensen.49

The LoProp based force fields are provided in the Supporting
Information.

The PE-DFT results for the excitation energies are the
statistical averages over 120 molecular configurations. A
spherical cutoff radius equal to 12 Å based on the distance
between the center of masses of the solute and solvent
molecules was used for every configuration. We have
previously shown that this cutoff radius provides converged
results in terms of electrostatics and that 120 molecular
configurations used in the averaging of the liquid-phase
results represents statistically converged properties (see, for
example, refs 17 and 30). The standard error of the mean is
evaluated as s/�N, where s is the sample standard deviation
and N is the number of samples.

4.3. Benchmarks of the Force Fields. In this work we
assess the quality of the force fields used for the water
molecules by comparing the molecular electrostatic potentials
in the vicinity of the molecule on the basis of the force field
and quantum chemical reference calculations. The electro-
static potential is the most suitable observable for such a
comparison since it enters directly in the PE potential
operator in eq 8. The electrostatic potential was probed at a
number of points forming the grid around the water molecule.
The grid is formed between two concentric van der Waals
surfaces of the molecule. The inner boundary of the grid is
a conventional van der Waals surface of water molecule
constructed from atom-centered interlocking spheres with the
van der Waals radii of 1.55 Å for oxygen50 and 1.20 Å for
hydrogen51 atoms. The outer boundary is obtained as the
van der Waals surface formed using van der Waals radii
scaled by a factor of 4. The grid points are then homoge-
neously distributed between the two van der Waals surfaces
with a separation between two neighboring grid points of

0.2 Å in all three directions. The resulting grid is thus
composed of 122 263 points in total. The electrostatic
potential due to the multipoles at the ath grid point was
calculated according to

where the summations are over all multipole expansion
centers in the molecule and all multipoles. The QM
electrostatic potential at the ath grid point is the expectation
value of the 1/(|ra - r|) operator plus the nuclear contribution.
The B3LYP exchange-correlation functional and the aug-
cc-pVTZ basis set, i.e., the same method used to derive the
LoProp force fields, was used to evaluate the QM reference
electrostatic potential. The analysis is then performed in terms
of the root-mean-square deviation (rmsd)

where N is the number of grid points. In particular, we
performed the analysis on the subsets of the grid points
between two close-lying van der Waals surfaces so as to
investigate the behavior of the rmsd with respect to the
distance from the molecule.

The quality of the polarizabilities can be assessed by
applying an external homogeneous electric field in the
calculation of the electrostatic potential. This field will give
rise to induced dipoles which in turn creates an electrostatic
potential around the molecule. Two calculations are then
performed at the B3LYP/aug-cc-pVTZ levelsone in vacuum
and another in the external electric field. The QM reference
is then obtained by subtracting the electrostatic potential in
vacuum from that in the external field at every grid point.
In this work we applied an electric field with the magnitude
of 0.01 a.u. and all Cartesian components positive and equal.
We used the Dalton program for the QM calculations,
whereas the construction of the grid, calculations of the
electrostatic potential and the analysis are performed using
the Whirlpool program.52

5. Results and Discussion

Below we detail the results from the calculations performed
using the PE-DFT approach with regards to the assessment
of the force fields.

5.1. Quality of the Force Fields. We inspect the quality
of the force fields used for a water molecule by comparing
the electrostatic potentials due to classical and quantum
mechanical representations of the molecule. This is important
in the present context as it is desirable to use, for example,
permanent multipole expansions truncated at the lowest
possible order and still obtain converged electrostatic interac-
tions. Similarly, it is of interest to investigate if the induction
effects are sufficiently accurately described by using the
simpler isotropic form of the polarizabilities or if anisotropic
polarizabilities have to be used. The distribution of the force
field parameters over the molecule is also an open question.

�a ) ∑
s)1

S

∑
k)0

K
(-1)k

k!
Tas

(k)Qs
(k) (39)

rmsd ) � 1
N ∑

a

(�a - �a
QM)2 (40)

Advanced QM/MM Approach Using PE Scheme J. Chem. Theory Comput., Vol. 6, No. 12, 2010 3727



In Figure 1 we show the rmsd obtained by comparing the
molecular electrostatic potential due to multipole moments
taken from the considered force field and the quantum
mechanically computed potential for different distances from
the molecular van der Waals surface. In particular, we
consider the three atomic point charges from the Ahlström
force field and multipoles up to octupoles taken from the
LoProp force fields. Figure 1 clearly illustrates that the
multipole expansion is appropriate at large distances from
the molecule and that higher order multipoles are mandatory
to consider when the molecular potential close to the
molecule is probed. We observe that the electrostatic
potential due to the LoProp force field including atomic
charges and dipole moments (M1) is poorer recovered than
using the atomic point charges (M0) only. Quadrupole
moments have a very pronounced effect and improve the
molecular electrostatic potential considerably, as it was also
found in ref 53. The octupole moments contribute little to
the electrostatic potential. The atomic point charges in the
Ahlström force field are constructed so as to implicitly
include higher order multipoles. However, it is evident from
Figure 1 that the improvement is negligible compared to the
M0 force field and cannot match the performance of the M2
force field. We see that the LoProp force field which includes
multipoles at bond midpoints (M2BM) offers minor im-
provement as well. We also inspected the M3BM force field,
and octupoles were found to provide virtually no improve-
ment. To conclude, we find that the LoProp force field with
multipoles up to quadrupole moments assigned to the atomic
sites of the water molecule provides apparently converged
electrostatic interactions in terms of the multipole expansion.

In Figure 2 we compare the induced changes in the
electrostatic potentials due to an external electric field. Here
the electrostatic potential is due to the dipole moments
induced by the external electric field. The QM reference
electrostatic potential is the difference between the potential
with and without the external field. We observe that the
distributed isotropic polarizabilities in the LoProp force field
lead to a more accurate account of the polarization of the
electrostatic potential as compared to the single molecular

isotropic polarizability assigned to the oxygen site of the
water molecule in the Ahlström force field. Further improve-
ment, though not that pronounced, is achieved by using the
anisotropic polarizabilities. However, we would expect a
larger difference in other molecules with a higher degree of
anisotropy than a water molecule. We note that the rmsd in
the case of induced dipoles is smaller by at least an order of
magnitude than that due to the multipoles. This indicates
that the specific description of the polarization is not as
important as an accurate account of the electrostatics.
However, as detailed later, explicit inclusion of polarization
is generally found to be important for solvent induced shifts
of excitation energies.

5.2. Excitation Energies. We examine the effects from
the water solvent on the excitation energies of the solute
molecules using our PE-DFT method. More precisely, we
will look at the behavior of the solvent induced shifts of the
excitation energies as we vary the complexity of the force
field used in the PE-DFT calculations. We only include a
solute molecule in the QM core; thereby only electrostatic
and induction interactions are considered even though other
interactions are known to be important, especially for πf π*
transitions.17,30 This allows us to systematically investigate
the effects from the electrostatic and induction interactions
on the solvent shifts.

The computed excitation energies used as gas-phase
references for the solvent shifts are shown in Table 1 together
with the corresponding experimental data.54-58 The com-
puted excitation energies are generally in good agreement
with the experimental values. For the nf π* transitions the
calculated values are off by 0.01 and 0.1 eV for acetone and
acrolein, respectively. In the case of πf π* transitions the
deviation from experiment ranges from 0.02 eV in acrolein
to 0.6 eV in pyridine. For uracil and the coumarins the
computed excitation energies are overestimated by about 0.3
eV. It should be noted that the presented experimental value
for coumarin 151 is our estimate of the excitation energy at
the absorption maximum in vapor phase. It is based on values
given by Ernsting et al.58 In that work the authors measured
the wavelengths of the absorption maxima of several

Figure 1. rmsd of the molecular electrostatic potential due
to the multipoles of a water molecule as a function of the
distance from the molecular van der Waals surface. The
distance from the surface is given as the factor scaling
the van der Waals radii. rmsd is in a.u.

Figure 2. rmsd of the molecular electrostatic potential due
to the induced dipole moments of a water molecule as a
function of the distance from the molecular van der Waals
surface. The distance from the surface is given as the factor
scaling the van der Waals radii. rmsd is in a.u.
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coumarins and also the first strong vibronic band observed
in a supersonic jet. The difference between the wavelengths
of the absorption maxima and the vibronic bands are between
about 18 and 28 nm. Subtracting the differences from the
measured vibronic band of coumarin 151 leads to our
estimate of the excitation energy at the absorption maximum
in vapor phase given in the table.

The calculated solvent shifts are shown in Figures 3-9
together with the experimental solvent shift.54-61 The first
columns, i.e., M0, M1, M2 and in the cases of acetone,

acrolein, and pyridine also M3, in each figure show the trends
of the shifts with increasing order of the multipole expansion.
These force fields do not model solvent polarization and are
only used to investigate the effects of the higher order
multipoles on the excitation energies. In all cases we observe
a large effect from both the dipole and quadrupole moments.
Adding octupoles only leads to very small changes that are
within the statistical errors, indicating that we are converged
at the quadrupole level with respect to the order of the
permanent multipole moments. We thus observe a clear
correlation between the trends here and the behavior of the
force fields in terms of how well they reproduce the QM
electrostatic potential (see Figure 1 and discussion in section

Table 1. Calculated and Experimental Gas-Phase
Reference Vertical Excitation Energies of the Lowest
n f π* and/or π f π* Transitionsa

∆Evac (eV)

calcd exptl

n f π*
acetone 4.473b 4.46e

acrolein 3.783c 3.69f

π f π*
acrolein 6.405c 6.42f

pyridine 5.595 4.99g

uracil 5.384d 5.08h

coumarin 151 4.020 3.81 ( 0.06I

coumarin 153 3.675 3.37j

a The calculations were performed at the CAM-B3LYP/
aug-cc-pVDZ level. b Reference 29. c Reference 17. d Reference
30. e Reference 54. f Reference 55. g Reference 56. h Reference
57. I Estimated value based on experimental data in ref 58 (see
section 5.2 for more details). j Reference 58.

Figure 3. Gas-to-aqueous solvent shift of the lowest n f π*
excitation energy in acetone.

Figure 4. Gas-to-aqueous solvent shift of the lowest n f π*
excitation energy in acrolein.

Figure 5. Gas-to-aqueous solvent shift of the lowest π f π*
excitation energy in acrolein.

Figure 6. Gas-to-aqueous solvent shift of the lowest π f π*
excitation energy in pyridine.

Figure 7. Gas-to-aqueous solvent shift of the lowest π f π*
excitation energy in uracil.

Advanced QM/MM Approach Using PE Scheme J. Chem. Theory Comput., Vol. 6, No. 12, 2010 3729



5.1). Note that the shifts at the M0 and M2 (and M3) levels
in general are very similar due to the fact that the effects
from the dipole and quadrupole moments tend to cancel each
other. This is not always the case, however, as we clearly
see for pyridine (Figure 6) where the shifts at the M2 (and
M3) level are about 75% larger than at the M0 level and,
less pronounced, in acrolein (Figures 4 and 5) where the same
difference is about 10 and 15%, respectively. Finally, we note
that the same tendencies are observed in the M0P1-M2P1 and
M0PCM-M2PCM series of force fields. Therefore, we find
that it is, in general, necessary to include permanent
multipoles up to quadrupoles in the LoProp force fields to
get a converged description of the electrostatic interactions.
However, using only point charges can, in some cases, lead
to satisfying results as well.

Introducing distributed isotropic polarizabilities, in addition
to the permanent multipoles, to the LoProp force fields, i.e.,
M0P1, M1P1, and M2P1, leads to a substantial increase of
the solvent shifts. Comparing the shifts calculated at the
M2P1 level to the M2 level shows that the solvent shifts are
increased from about 50% in the case of nf π* transitions
in acetone (Figure 3) and acrolein (Figure 4) to more than
100% for the πf π* transition in uracil (Figure 6). This
clearly shows that induction effects have a significant impact
on the solvent shifts and therefore must be taken into account.
Furthermore, we observe that induction effects are particu-
larly important for πf π* transitions. Using distributed
anisotropic polarizabilities, i.e., the M2P2 force field, gives

further 6-10% increase in the solvent shifts as compared to
the M2P1 level, which in the case of pyridine and uracil is
about the same size as the statistical errors. Thus, the use of
distributed anisotropic polarizabilities only gives small
improvements as compared to the distributed isotropic
polarizabilities. This can be explained by a rather small
degree of anisotropy of a water molecule. Using the most
sophisticated LoProp force field, M2P2BM, decreases the
solvent shifts by a small amount as compared to the M2P2
force field which is of comparable magnitude but opposite
sign as the difference between the M2P1 and M2P2 force
fields. This indicates that the M2P2 force field has a tendency
to overestimate the induction effects. Furthermore, it shows
that it can be sufficient to use the M2P1 force field; however,
this is only true for solvent molecules with low anisotropy
such as water. The improved results at the M2P2BM level
can mainly be contributed to an improved description of the
induction interactions since we expect that the electrostatic
interactions are converged at the quadrupole level. We expect
that the M2P2BM force field provides the best model of the
environment through an elaborate description of both the
electrostatic and induction effects. This is achieved by using
a converged distributed multipole expansion and distributed
anisotropic polarizabilities with all properties localized on
atoms and bond midpoints. It is interesting that the M0P1
force field performs rather well in most cases compared to
the full M2P2BM force field. Therefore, we find that an
appropriate approximation of the PE potential would be to
use the M0P1 force field which captures the main parts of
the electrostatics and induction effects due to a water solvent
on the vertical excitation energies.

Recognizing that it is necessary to include the induction
effects, it is an open question whether explicit inclusion of
polarization is mandatory or if it is sufficient to have implicit
polarization by using enhanced permanent multipoles. We
used the PCM method in combination with the LoProp
method to model the bulk solvent effects on the permanent
multipoles. Using the M0PCM, M1PCM, and M2PCM force
fields, we obtained larger solvent shifts as compared to the
M0, M1, and M2 force fields. However, at the point charge
level this increase is comparable to the statistical errors.
Therefore, to obtain an improved description of the environ-
ment using the LoProp method in combination with PCM,
it is necessary to include multipoles up to quadrupoles, i.e.,
the M2PCM force field. Here it appears that the largest effect
is achieved for nf π* transitions, which indicates that
explicit modeling of induction effects are important for
πf π* transitions. The results for the solvent shifts of the
nf π* transitions calculated using the M2PCM force field
are about 20% smaller than the shifts obtained using the
M2P2BM force field. For the πf π* transitions this
difference is even larger and ranges from roughly 30 to 50%.
Therefore, we find that the nonpolarizable M2PCM force
field can be a reasonable representation of water molecules
when nf π* transitions are considered depending on the
desired accuracy. However, explicit treatment of polarization
is essential for πf π* transitions.

It is interesting to compare the results obtained using the
elaborate LoProp force field, M2P2BM, with other com-

Figure 8. Gas-to-aqueous solvent shift of the lowest π f π*
excitation energy in coumarin 151.

Figure 9. Gas-to-aqueous solvent shift of the lowest π f π*
excitation energy in coumarin 153.
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monly used force fields. For this purpose we chose the
standard nonpolarizable TIP3P force field and the polarizable
Ahlström force field. The solvent shifts obtained using the
TIP3P force field are all significantly smaller than those
obtained using the M2P2BM force field. As expected we
also observe substantially larger deviations for the πf π*
transitions since these require explicit modeling of the
induction effects. The shifts of the nf π* transitions are
about 20% smaller compared to the results obtained using
the M2P2BM force field, whereas the shifts of the πf π*
transitions vary between roughly 40 and 60%. The Ahlström
force field, on the other hand, provides results that are in
much better agreement with the results computed using the
M2P2BM force field. Using this force field results in shifts
that are about 10-35% smaller as compared to the M2P2BM
level.

It is common to neglect the dynamical response of the
environment that is due to the differential change between
the ground-state and excited-state electron density or to
include it in an approximate form.7,8 We will denote the first
case as the Q1 approximation because it corresponds to the
neglect of the Q̂2

ω operator (eq 21) in the case of linear
response. The second case we will denote as the Q2*
approximation, where the Q̂2

ω operator is included in an
approximated form which corresponds to a block-diagonal
classical response matrix (eq 6) with the polarizability tensors
along the diagonal; i.e., the interaction tensors are omitted.
In the Q1 approximation the induced dipoles from the
optimization of the ground-state wave function are also used
in the response calculations. This can be a good approxima-
tion if the electronic density of the solute does not change
significantly upon excitation. The Q2* approximation partly
captures the dynamical environmental response, and the size
of the effect is also connected to the difference between the
electronic densities of the ground and excited states. To
examine the effects of both approximations, we made
additional calculations on acetone and coumarin 151. The
results can be found in Table 2, where the Q1 column presents
the solvent shifts using the Q1 approximation and the Q2*
column contains the results where the Q2* approximation is
used and in the final Q2 column are the shifts where the full
dynamical response of the environment is included. First of
all we observe that both approximations have negligible or
no effect on the nf π* transition in acetone compared to
the full inclusion of dynamical response. However, for the
πf π* transition in coumarin 151 we observe substantial
effects from the Q1 approximation and to a lesser degree
from the Q2* approximation. The Q1 approximation results
in a solvent shift that is roughly 20% smaller than the shift
calculated without approximations, while the Q2* approxima-

tion overshoots by roughly 4%. As a measure of the
difference between the electron density of the ground and
excited states we also calculated the difference between the
dipole moment of the ground and excited states of acetone
and coumarin 151 in aqueous solution at the PE(M2P2BM)-
CAM-B3LYP/aug-cc-pVDZ level. This quantity is conve-
niently obtained as the residue of a quadratic response
function. The calculated dipole moments are shown in Table
3. Here we see that the magnitude of the dipole moment of
acetone decreases by 1.3 D upon excitation, whereas in
coumarin 151 it goes up by 4.8 D thus explaining the much
larger effects due to the Q1 and Q2* approximations on the
πf π* transition in coumarin 151. These results clearly
show that completely neglecting the dynamical response of
the environment when computing excitation energies is a
severe approximation if there is a significant change in the
electron density upon excitation. The results also indicate
that the approximate inclusion of dynamical response is a
much better approximation; however, the error is still
significant compared to the statistical errors. Moreover, we
would expect the error to become larger in molecular systems
where the difference of the ground- and excited-state electron
density is even larger.

The nf π* electronic absorption energies of acetone and
acrolein have been extensively studied using different
theoretical solvation models, and we refer to refs 17, 47,
and 62 and references therein for discussion of some
previously reported results. Very recent experimental mea-
surements by Renge54 estimate the gas-to-aqueous solvent
shift of the nf π* transition in acetone at 0.22 eV. The
experimental estimate of the corresponding solvent shift in
acrolein of 0.25 eV55 has recently been confirmed.17 Yoo et
al.8 used DFT in combination with the EFP method to
compute the solvent shift of acetone, and the resulting shift
of 0.21 eV compares very well to experimental result. Very
recently, Kaminski et al.63 have used the orbital-free embed-
ding potential due to the statistically averaged solvent density
through three-dimensional reference interaction site model
(OFE/RISM) to study the lowest excitation energies of
several organic probes in solution. The computed gas-to-
aqueous solvent shift of the nf π* transition in acetone is
0.19 eV, while the corresponding shift in acrolein of 0.33
eV is found to be somewhat overestimated compared to
experimental data. Recently, several studies have elucidated
the nf π* transition in acetone and/or acrolein in water
solution using electronic structure approaches rooted in
coupled cluster theory. Caricato et al.64 have evaluated this
solvent shift in acrolein using EOM-CCSD/PCM and ob-
tained 0.23 eV. A solvent shift of 0.18 eV in acetone was
predicted on the basis of CCSD/MM calculations using a

Table 2. Comparison of Solvent Shifts Where the
Environmental Response Due to the Differential Change
between the Ground- and Excited-State Electron Density Is
Approximated (See Section 5.2 for Details)a

solute Q1 Q2* Q2

acetone (n f π*) 0.226 0.224 0.224
coumarin 151 (π f π*) -0.353 -0.451 -0.435

a The calculations were performed at the PE(M2P2BM)-
CAM-B3LYP/aug-cc-pVDZ level.

Table 3. Molecular Dipole Moments of Solvated Acetone
and Coumarin 151 in the Ground State and Excited States
Corresponding to the Lowest n f π* and π f π*
Transitions in Acetone and Coumarin 151, Respectivelya

solute µgs (D) µex (D)

acetone 5.0 3.7
coumarin 151 11.0 15.8

a The calculations were performed at the PE(M2P2BM)-
CAM-B3LYP/aug-cc-pVDZ level.
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nonpolarizable water potential.65 Mata66 has investigated the
many-body effects on the solvent shifts and obtained 0.12
and 0.24 eV for the solvent shifts of acetone and acrolein,
respectively, using a reduced two-body expansion with the
EOM-CCSD method. Sneskov et al.67 have elucidated the
importance of triples excitations in the coupled cluster
expansion on the solvent shift of the nf π* and πf π*
excitation energies of acrolein and have found generally small
effects as compared to CCSD. This short overview of the
most recent results demonstrates the capability of different
theoretical methods to describe the solvent effects on the
nf π* transition of acrolein and acetone. In this work we
have observed a satisfactory agreement between theoretical
and experimental results for the solvent shifts of the nf π*
transition of acetone. However, the solvent shift of 0.33 eV
for acrolein is overestimated as compared to the experimen-
tally measured 0.25 eV. The experimental data54,55,57,59-61

for the solutes in aqueous solution are provided in Table 4
together with the corresponding theoretical values obtained
using the M2P2BM force field.

Nonelectrostatic interactions have been found to substan-
tially contribute to the solvent shift of the π f π*
transitions.17,30,66 In this study we have neglected all effects
other than electrostatic and induction interactions, and
therefore the computed solvent shifts of the πf π* excita-
tion energies are in general considerably underestimated
against experimental data, as illustrated in Figure 5 to Figure
9. Calculations by Caricato et al.64 using EOM-CCSD and
PCM gave a solvent shift of -0.38 eV of the πf π*
transition in acrolein, which is very similar to the results of
the present work and also to the results based on CCSDR(3)/
MM calculations in ref 67. In ref 66 the EOM-CCSD method
coupled to the TIP3P force field for the water molecules gave
a solvent shift of -0.27 eV in acrolein. Furthermore,
extensive two-body expansions were found to be mandatory
to obtain good agreement with experimental data. High-level
coupled-cluster calculations have estimated a blue-shift of
the πf π* transition in uracil.68 In that work, a gas-phase
result which is in much better agreement with experiment,
was obtained; however, the effects from the solvent are not
well described which emphasizes the importance of a good

embedding potential, especially when considering πf π*
transitions. Very recent CC2/MM calculations using the
Ahlström force field predicted the solvent shift of -0.20
eV.30 In the present paper a smaller shift of around -0.11
eV was found, indicating that in this case the CC2 model
accounts more accurately for the differential effects of
dynamical correlation compared to the CAM-B3LYP func-
tional. A solvent shift of -0.25 eV in coumarin 151 was
obtained from OFE/RISM calculations,63 which is somewhat
underestimated as compared to our PE-DFT results and
experimental estimate. Sulpizi et al.69 have obtained a solvent
shift of -0.33 eV for coumarin 153 from TD-DFT/MM
simulations which is somewhat smaller compared to our
predictions and experimental findings, likely due to the
implicit treatment of intermolecular polarization.

6. Summary and Conclusions

We have presented the theoretical details and implementation
of the PE-DFT (and PE-HF) method. This method is a
focused model based on a self-consistent polarizable embed-
ding scheme, i.e., the PE model, applied to Kohn-Sham
density functional theory. The method includes ground-state
density optimization and calculation of molecular properties
through time-dependent response theory, wherein the effects
from a polarizable atomistic environment are taken into
account in a self-consistent manner. The electrostatic interac-
tions are modeled using a multicenter multipole expansion
which includes multipoles up to and including octupoles. The
polarization of the environment is described by using
distributed anisotropic polarizability tensors. The multipoles
and polarizability tensors are derived from quantum me-
chanical calculations and are distributed on the atomic sites
or on the atomic sites and bond midpoints.

To evaluate the performance of the method, we bench-
marked a series of force fields for a water molecule. The
electrostatic potential due to the permanent multipole mo-
ments was sampled and compared to the quantum mechani-
cally derived electrostatic potential. We found that the
multipole expansion converges at the quadrupole level where
it performs well at long and medium distances compared to
the reference electrostatic potential. The errors increase at
short distances but still show a big improvement compared
to force fields with multipole moments truncated at lower
order. The electrostatic potential due to induced dipole
moments was also benchmarked and showed that the
contribution from induction effects to the electrostatic
potential is small compared to the permanent multipole
moments. The best performance was observed with distrib-
uted anisotropic polarizabilities, although the improvement
over distributed isotropic polarizabilities was not impressive.
This was ascribed to the low degree of anisotropy of a water
molecule.

The capability of the implemented method was demon-
strated by computing the gas-to-aqueous solvent induced
shifts of the lowest nf π* vertical excitation energy in
acetone and acrolein and the lowest πf π* vertical excita-
tion energy in acrolein, pyridine, uracil, coumarin 151, and
coumarin 153. The solute-solvent dynamics were taken into
account through classical molecular dynamics simulations

Table 4. Calculated and Experimental Vertical Excitation
Energies of the Lowest n f π* and/or π f π* Transitions in
the Solvated Moleculesa

∆Eaq (eV)

calcd exptl

n f π*
acetone 4.697 ( 0.010 4.68b

acrolein 4.116 ( 0.014 3.94c

π f π*
acrolein 6.041 ( 0.009 5.90c

pyridine 5.542 ( 0.003 4.82d

uracil 5.264 ( 0.006 4.77e

coumarin 151 3.585 ( 0.011 3.39f

coumarin 153 3.239 ( 0.010 2.82 ( 0.03g

a The calculations were performed at the PE(M2P2BM)-
CAM-B3LYP/aug-cc-pVDZ level. b Reference 54. c Reference 55.
d Reference 59. e Reference 57. f Reference 60. g Value measured
on a spectrum of coumarin 153 in aqueous 1-propanol solution
(XPrOH ) 0.05) provided in ref 61.
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using polarizable force fields. A systematic investigation of
the effects from electrostatic and induction interactions on
the solvent shifts showed that the effects on the solvent shifts
from electrostatic interactions converge at the quadrupole
level, consistent with the benchmarking of the force fields.
Furthermore, we found that modeling of the induction
interactions is essential for the calculation of accurate solvent
shifts, particularly for πf π* transitions. The best perfor-
mance was observed with the most detailed force field which
includes multipoles up to quadrupoles and anisotropic
polarizability tensors distributed on atomic sites and bond
midpoints of the water molecules. Including the induction
effects implicitly through an enhancement of the permanent
multipole moments improved the solvent shifts although it
could not match the results where explicit modeling was
used. Moreover, for πf π* transitions the effects were
rather small and we therefore found that explicit account of
the induction interactions is necessary for excitations of this
nature. Finally, we found that an appropriate approximation
of a water solvent should as a minimum consist of point
charges and isotropic polarizabilities, which capture the main
parts of the electrostatics and induction effects on the vertical
excitation energies.

Our formulation of polarizable embedding within response
theory includes the fully self-consistent many-body response
of the environment. We investigated the effects on the solvent
shifts when the dynamical response of the environment due
to the differential change between the ground- and excited-
state electron density is either neglected or approximated.
Both are valid approximations if the electron density does
not change significantly upon excitation. Calculations on
acetone and coumarin 151, which have a small and large
difference, respectively, between the dipole moment of the
ground and relevant excited state, showed that complete
neglect of the dynamical response can introduce significant
errors. For coumarin 151 it comprised as much as 20% of
the total calculated shift. The error due to an approximate
inclusion of the dynamical environmental response was only
4% of the total shift in coumarin 151 and therefore presents
a much better approximation. These errors are expected to
increase in molecular systems where the electron density
difference between the ground and excited states becomes
even larger.

Comparisons with experiment showed satisfactory agree-
ment. The sign of the solvent shifts, i.e., blue shift of nf π*
transitions and red shift of πf π* transitions, were in all
cases correctly predicted. For nf π* transitions the solvent
shifts tend to be slightly overestimated while the opposite
applied to πf π* transitions. This was ascribed to the
neglect of certain intermolecular interactions, e.g., short-range
repulsion and dispersion, as well as the limitations inherent
in current exchange-correlation functionals.
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(69) Sulpizi, M.; Röhrig, U. F.; Hutter, J.; Rothlisberger, U. Int.
J. Quantum Chem. 2005, 101, 671.

CT1003803

3734 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Olsen et al.
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Abstract: We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP,
M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron
atoms; cc-pVDZ on the rest of atoms) for prediction of the isomer shift (IS) and quadrupole splitting
(QS) parameters of Mössbauer spectroscopy. Two sources of geometry (density functional theory
optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals),
the Mössbauer spectra of which were determined at liquid helium temperature and where the X-ray
geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set
produces slightly more accurate linear correlations of electronic density used for prediction of IS
and noticeably more accurate results for the QS parameters. We confirm and discuss the earlier
observation of Noodleman and co-workers that different oxidation states of iron produce different IS
calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS.
BPW91, OLYP, PBE, and M06 have mixed success, whereas SVWN5 and M06-2X demonstrate
the worst performance. Finally, our calibrations and conclusions regarding the best functional to
compute the Mössbauer characteristics are applied to candidate structures for the peroxo and Q
intermediates of the enzyme methane monooxygenase hydroxylase (MMOH) and are compared to
experimental data in the literature.

Introduction

Mössbauer spectroscopy1,2 is a valuable experimental technique,
especially suitable for the study of iron-containing substances.
It is sensitive to the distribution of charge density around the
57Fe nuclei and is used to probe the geometric and electronic
structures of molecular systems of all types: from simple
inorganic salts to metalloproteins. The investigation of complex
catalytic cycles of iron-containing proteins has particularly
benefited from Mössbauer spectroscopy.3–8

Recently, there has been a surge of applications of density
functional theory (DFT) to predict Mössbauer spectra.9–14,16–20

DFT, combining rigorous physics and numerical parametriza-
tion, serves as a de facto standard in theoretical investigations
of biological processes that are dependent on quantum effects.

The following parameters are most often computed and
compared to experiment: the isomer shift (IS) δ, quadrupole
splitting (QS) ∆E, and asymmetry parameter η. Several papers
report an acceptable agreement between theory and experi-
ment14,17,20,21 for medium-sized complexes, suggesting that
DFT can be regarded as a well-behaved method for predicting
Mössbauer characteristics. This situation appears to be in
contrast to many other applications where pure DFT suffers
from drawbacks such as defective description of dispersion
interaction and systematic errors in predicting thermochem-
istry22,23 that need to be remedied by separate treatments.24,25

However, several cases have been described in which DFT
completely failed to agree with experiment in accounting for
the quadrupole splitting parameter,26,27 arguably owing to
DFT’s single-reference character.

Despite extensive applications of DFT to computing
Mössbauer parameters there have been very few studies with
the goal of assessing the accuracy of various functionals and
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basis sets on a broad set of iron-containing compounds. The
complexity of novel DFT functionals and quantity of
empirical parameters on which they are based have reached
a point at which it is difficult to reliably predict their
accuracy, judging only from the physical approximations that
went into constructing the functional. In this situation
benchmarking using a diverse data set becomes a necessary
step. A different view of the problem is provided by the
practical difficulty encountered when predicting the geom-
etries of intermediates in catalytic cycles of iron-containing
proteins. These intermediates are of often unknown structure,
are typically unstable, and cannot be crystallized. When the
experimental Mössbauer spectra are available, the computa-
tion of IS and QS allows one to choose the most probable
candidates from the variety of considered model structures.
However, the tendency of different functionals to produce
somewhat different IS and especially QS parameters may
not only lead to confusion (provided a few functionals have
been used in the study)3 but also may create the possibility
of reconciling the experimental values with the theoretical
ones in ref 20 or several candidate structures. Determining
the ‘error bars’ and placing the functionals into ‘accuracy
classes’ with respect to their ability to predict Mössbauer
characteristics would alleviate the uncertainty of such situ-
ations. At the end of this paper we demonstrate the
application of this strategy to the enzyme methane monooxy-
genase hydroxylase.

Several authors have made progress in assessing the quality
of the functionals with respect to the accuracy of their
Mössbauer parameter predictions. Nemykin and Hadt com-
pared the performance of BPW91 and B3LYP on a broad
range of ferrocene derivatives and other compounds.17 The
group of Oldfield tested these two functionals on porphyrin
derivatives12 and some unusual 2- and 3-coordinate Fe(II)
complexes.21 The first of these works concludes that B3LYP
performs slightly better than BPW91 (except for ferrocene
derivatives, where it seriously overestimates quadrupole
splittings), whereas the second found no significant difference
between the accuracy of these two functionals. At the same
time, the group of Noodleman uses another set of functionals,
OLYP, OPBE, and PW91,4,15,16,28,29 with variable success
in the case of PW91. Römelt et al.19 evaluated five diverse
functionals (BP86, TPSS, TPSSh, B3LYP, and B2PLYP)
based on their accuracy in predicting isomer shift on a set
of 20 compounds.

Even though these efforts set useful guidelines, a more
thorough benchmarking is desired in order to improve some
of the aspects of these studies. Below we review some of
their deficiencies and describe the improvements that we have
made to achieve our goal in the present study.

All previous investigations considered the Mössbauer data
points collected at different temperatures: from room tem-
perature to 4.2 K. Although this choice may have been driven
by the relative paucity of Mössbauer data, such data sets
nevertheless seem highly questionable because Mössbauer
spectra typically have a strong temperature dependence. The
dependence arises from different populations of low-lying
excited states as well as the corresponding geometry changes.
Theoretical calculations of ground states that do not take

thermal smearing into account should be compared to the
Mössbauer spectra measured at the lowest practical temper-
ature, 4.2 K. The linear extrapolations of both IS and QS to
4.2 K performed by Noodleman and co-workers16,28 may
improve the quality of the data set, but this operation should
be avoided in a benchmark study because nontrivial tem-
perature dependence of Mössbauer parameters or absence
thereof is very common (see, for example, refs 30 and 79).
The data set employed in the present work is restricted solely
to spectra taken at liquid helium temperature. Another
important restriction on a data set is constructing it exclu-
sively from the molecular systems for which X-ray and
Mössbauer spectra are known and belong to the same
compound. Very often simple ions (such as FeCl4

2-)
included in the data set have multiple Mössbauer spectra
available, corresponding to different counterions and/or
crystallization conditions.30 Notable changes in the geometry
of these ions, apparent in X-ray results, naturally give rise
to slightly different Mössbauer parameters and sometimes
lead to the citation of different experimental values for the
same ion, comparing them to Mössbauer data obtained from
DFT-optimized geometries, as in the case of FeCl4

2- in refs
13 and 29. Whether or not the DFT can accurately predict
Mössbauer parameters corresponding to different crystal-
lographic variants of the same ion is a separate question
which we leave for another study. The experimentally
determined geometries selected for our test set were unim-
paired: they did not have any parts of the structure missing
and did not require additional reconstruction. One more
restriction on the test set entries is that the multiplicity and
the spin state of the iron atoms is known for certain, and
those displaying spin crossover were excluded.

The issues discussed in the previous paragraph pertain to
the stricter selection of the molecular systems for the test
set. However, it is possible to also introduce improvements
of an ‘extensive’ nature: a larger set of parameters and
conditions under which benchmarking is performed. Here,
we study the performance of eight functionals: B3LYP,31,35,36

BPW91,32–34 M06,40 M06-2X,40 O3LYP,31,37 OLYP,31,38

PBE,39 and SVWN5.41–43 The first two of these have been
widely used for predicting Mössbauer parameters. M06 and
M06-2X are two interesting new functionals worth investi-
gating in the light of their superior accuracy in various
calculations.40 M06 is parametrized for organometallic and
inorganometallic chemistry, whereas M06-2X should have
a well-balanced, universal applicability. However, there is
no guarantee that the optimization protocols used to populate
over 30 adjustable parameters for these functionals leads to
improved performance in predicting Mössbauer spectra that
were not included in the training set.

Here, M06 and M06-2X are applied for prediction of the
Mössbauer parameters for the first time. O3LYP and OLYP
are built upon Handy’s OPTX exchange functional and
showed superior accuracy in predicting electronic densities
among several functionals44 as well as in other benchmarks.45

The last two functionals, PBE and the local density approx-
imiation (LDA) SVWN5, are considered more ‘physical’
rather than ‘empirical’, and even though they are not
functionals of choice in numerous modern applications, at
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times they display unexpected prominence. For LDA’s
impressive result for the dispersion interaction energetics,
see ref 46. This set is the largest selection of functionals to
be studied systematically in the context of the Mössbauer
spectra. Unfortunately, we were unable to evaluate such
promising modern functionals as TPSSh47 and B2PLYP48

because they were not available in our computational
package, Jaguar. B2PLYP was recently shown to yield the
best linear fits of the isomer shift.19 However, the perfor-
mance of B2LYP was only slightly superior to that of
B3LYP, which is included in this study.

All calculations in this work were performed with Gauss-
ian-type (GT) basis sets. The alternative is Slater-type (ST)
basis sets, which better approximate orbitals in the proximity
of the nuclei. However, GT bases are much more compu-
tationally tractable, which makes software capable of han-
dling ST rare. Zhang and Oldfield compared the effect of
these two types of basis sets on the predicted Mössbauer
parameters and found no apparent advantage of ST versus
GT bases.21 In this work we use two Gaussian bases on iron
nuclei: Partridge49 and Wachters.50 They both contain very
large exponential coefficients on s-primitives to facilitate the
reproduction of nuclear cusp, but the Partridge basis set is
completely uncontracted which makes it significantly larger
than Wachters. The groups of Neese13 and Filatov20,51 prefer
uncontracted bases, but other authors12,17 suggest that the
quality of the Wachters basis set (with contraction and
smaller exponential coefficients) is sufficient. Kurian and
Filatov,18 who computed the isomer shift from Filatov’s
nonempirical approach,51 also conclude that completely
uncontracted bases are not necessary to achieve good
accuracy. Comparison of the accuracy of the contracted and
uncontracted basis sets on a large data set seems logical.

Another logical comparison for a comprehensive bench-
marking study is that between Mössbauer parameters ob-
tained from the X-ray geometries and DFT-optimized
geometries. Both sources introduce different types of errors.
The coordinates of heavy atoms in X-ray geometries,
dependent on resolution and thermal atomic motion, are
generally considered highly accurate for most measurements.
However, such measurements are not always available.
Additionally, the positions of the hydrogen atoms cannot
sometimes be extracted from the X-ray data, and such atoms
have to be added by means of computational algorithms.
DFT-optimized geometries, although readily procurable, are
subject to errors inherent in functionals and finite basis sets.
Functionals such as B3LYP and O3LYP have established
an excellent reputation in optimizing the geometries of
organic molecules. Their performance on metal-containing
systems is not so well tested and is therefore less reliable.
Despite this deficiency, Han and Noodleman argue that it is
more fair to use DFT-optimized geometries in DFT Möss-
bauer calculations because these geometries correspond to
energetic minima within the DFT model. It is perhaps
assumed that the reported X-ray geometries differ, through
either crystallization, distortion, or bad resolution, from the
‘relaxed’ configurations for which the Mössbauer parameters
are measured, and DFT optimization in principle alleviates
this proposed effect. It must be noted that DFT optimizations

are typically performed at a lower level of theory than that used
for subsequent Mössbauer calculations, so that in such cases
the single-point electronic density still does not correspond to
the optimal geometry. Nevertheless, it is not clear which of these
errors dominates. Nemykin and Hadt,17 who studied the
question, observed little variation of results, but their data set
was not very diverse and predominantly consisted of high- and
medium-temperature experimental data points.

In this work we compute the Mössbauer parameters from
both X-ray and DFT-optimized geometries using a typical
protocol for the optimization (see the Computational Details
section for the details). When we pick a particular optimiza-
tion protocol out of many possible protocols we do not
attempt to conclude after the analysis of the results which
source of the geometries (theoretical or experimental)
produces better accuracy, except in a few cases where there
are large differences in the results as compared to experiment.
In comparing results obtained from both types of geometries
we are only trying to assess the particular optimization
method we have chosen and also understand to what degree
the small changes of the positions of atoms influence the
Mössbauer results.

To summarize, we investigate the prediction of IS and QS
by 8 functionals combined with 2 Gaussian basis sets of
different composition and 2 sources of geometries (X-ray and
optimized). The experimental data for our test set consisting of
31 compounds and 35 individual Mössbauer signals was
obtained at liquid helium temperature. We believe ours to be
the most comprehensive such study to date.

Finally, we apply our optimized DFT Mossbauer protocol
to computation of Mossbauer spectra for various intermedi-
ates in the catalytic cycle of methane monooxygenase
hydroxylase (MMOH), a nonheme diiron protein that con-
verts methane to methanol under room temperature condi-
tions.53,54 Using criteria developed in our benchmark study,
we achieve good agreement between calculated and experi-
mental Mossbauer data for a number of MMOH structures.
The benchmarking data are essential in assessing the degree
to which Mossbauer comparisons can be used to confirm,
or rule out, assignment of three-dimensional structures to
experimentally observed intermediates.

Computational Details

All DFT calculations were performed using the locally
modified Jaguar 7.5 program.52 Although Jaguar commonly
employs the pseudospectral approach,55–59 speeding up the
solution of the Kohn-Sham equations significantly, we
computed all the integrals analytically so as not to introduce
a potential source of error in the benchmarking study. The
unrestricted Kohn-Sham equations converged to 10-8

hartree in energy, and fine grids were employed for com-
putation of densities on iron atoms. The medium quality of
the wave function (converged to 10-6 hartree) and coarse
grids were generally sufficient in the case of the Wachters
basis but not in the case of the Partridge basis set (see ref
13 for a detailed discussion of this effect).

The uncontracted Partridge basis set had the structure
(20s,12p,9d), and the contraction scheme of the Wachters
was 62111111/331211/3111. The basis set on all the noniron
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atoms in single-point calculations was cc-pVDZ. These basis
sets can be obtained from the EMSL Basis Set Exchange
database.60 The d orbitals carried pure orbital momentum.
For geometry optimizations, the pseudospectral approach was
used, with a B3LYP functional, the LACVP* basis set61 on
iron atoms, and 6-31G* on all other atoms. Many complexes
in our data set contained over 100 atoms (the largest being
134 atoms), so this approximation level was necessary. We
realize that the offered optimization model does not serve
as the single ‘ultimate’ representation of all the optimization
models, to be evaluated against the X-ray crystallography
in its function to furnish accurate geometries; rather, it is a
functional method comparable to that which served us
reliably in the past.62

The models representing the compounds from Table 1
were initially constructed from the experimental crystal
structures. Counterions and solvent molecules were not
included. In constructing the models, we took care to preserve
as much of the original structure as possible. In some rare
cases, however, we had to replace extremely large (and

seemingly not important for the electric field gradient on the
iron atoms) groups in the ligands by smaller ones, to reduce
the size of the system. These structures were used as the
starting point in the geometry optimizations. All X-ray-based
geometries used in our calculations are available in the
Supporting Information.

Data Set. In constructing the data set, apart from the
criteria for the soundness of the X-ray and Mössbauer
experimental data, we included diverse chemical structures.
The data set used in this work is presented in Table 1. It
comprises compounds with the iron atoms in oxidations states
+2, +3, and +4 and in low- as well as high-spin states.
The total spin is n/2 where n varies from 0 to 5.

The main chemical classes from Table 1 are as follows,
where the numbers in parentheses refer to the identity
numbers in the table: (i) diiron(II) (1, 3-5, 10, and 11) and
diiron(III) (14-18, 22) ligand complexes with bridging
carboxylates, which may be regarded as structural models
for the active sites of bacterial multicomponent monooxy-

Table 1. Test Set of Compounds Used for Benchmarking in This Worka

no. system code
Fe

oxidation spin δ, mm/s
|∆E|,
mm/s J, cm-1 R factor, % ref

1 Fe2(O2CH)2(BIPhMe)2 SISKOU +2 0 1.26 2.56 ∼0 4.1 78
+2 1.25 3.30

2 Fe(HB(mtdaR)3)2 JOHCEP +2 0 0.49 0.26 4.83 79
3 Fe2(OAc)2(TPA)2

2+ VUNMIA +2 0 1.12 3.33 ∼1 4.7 80
4 Fe2(ImH)2(XDK)(O2CPh)2(MeOH) YUZKAF10 +2 0 1.35 3.04 -0.51 8 81

+2 1.12 2.83
5 Fe2(py)2(O2CArMes)4 XIGDIA +2 0 1.14 3.23 30 5.44 82
6 Fe(OEP)CO YEQPOA +2 0 0.27 1.84 2.85 83
7 Fe(OEP) DEDWUE +2 1 0.63 2.55 7.2 84
8 Fe(OEC) BUYKUB10 +2 1 0.62 1.71 6 84
9 Fe3(SPh)6(CO)6 FATBOR +2 2 1.00 2.00 3.9 85

+2 0.10 0.22
10 Fe2(H2O)(O2CPh)4(TMEN)2 VUPJUL +2 2 1.25 3.11 small 4.4 86

+2 1.26 2.70
11 Fe2(H2O)(OAc)4(TMEN)2 VUPJOF +2 2 1.27 2.75 small 5.5 86
12 Fe(DTSQ)2

2- PTSQFE10 +2 2 0.67 4.01 5.5 87
13 Fe(SPh)4

2- PTHPFE10 +2 2 0.66 3.24 4.7 87
14 Fe2O(HBpz3)2(OAc)2 CACZIP10 +3 0 0.52 1.60 -121 4 88
15 Fe2(OH)(HBpz3)2(OAc)2 COCJIN10 +3 0 0.47 0.37 ∼-17 4.8 93
16 Fe2(OH)(O2P(OPh)2)3(HBpz3)2

2+ PIMTAG +3 0 0.44 0.44 ∼-15 6.9 93
17 Fe2O(Piv)2(Me3TACN)2

2+ ZOCPEM +3 0 0.48 1.54 -111 6.6 89
18 Fe2(O)2(6-Me3-TPA)2

2+ YOCKAC +3 0 0.50 1.93 54 6.5 90
19 Fe2(NO)2(Et-HPTB)(O2CPh) RABHAD +31 0 0.67 1.44 -23 8.5 91
20 Fe2(S-t-Bu)2(NO)2 GIDKIN02 +3 0 0.15 0.90 2.11 92
21 (Fe(Me3TACN)(TTC))2O YOHMOX +3 0 0.46 1.41 -90 6.5 94
22 Fe2O(TMIP)2(OAc)2

2+ JIGNUI +3 0 0.52 1.61 -120 5.7 95
23 Fe(OEP)(4-NMe2Py)2

2+ VOFLOR +3 1/2 0.26 2.15 6.7 96
24 Fe(S-t-Bu)3NO WEDXAF +3 3/2 0.26 0.46 2.93 92
25 FeCl5(H2O)2- VOCBAQ +3 5/2 0.49 0.56 3.2 97
26 Fe(SEt)4

- CANDAW10 +3 5/2 0.25 0.62 5 98
27 Fe(NO)2(S(p-Me)Ph)2

- SONMUE +3 5/2 0.18 0.69 3.55 99
28 FeCl(MBTHx)2 CELVEU +3 5/2 0.43 0.98 3.8 100
29 (Fe(TAML)2)2O- KAJBIH +4 0 -0.07 3.30 >100 5.32 101
30 Fe(PPh3)2(“S2”)2 SOCVUB +4 1 0.16 1.52 5.9 102
31 Fe(PPh3)(“S2”)2 SOCWAI +4 1 0.12 3.03 4.6 102

1 Deduced from Mössbauer, magnetic susceptibility, and SCF-XR data. a The six-letter codes refer to the Cambridge Structural Database
identifiers. The coupling constant J is given when known. The ligands are encoded as follows: BIPhMe ) bis(1-methylamidazol-2-
yl)phenylmethoxymethane, DTSQ ) bis(dithiodithiosquarato-S,S′) dianion, Et-HPTB ) N,N,N′,N′-tetrakis(N-ethyl-2-benzimidazolyl-
methyl)-1,3-diaminopropane), ImH ) imidazole, HB(mtdaR)3 ) tris(mercaptothiadiazolyl)borate, HBpz3 ) hydrotris-1-(pyrazolyl)borate, HO2

CArMes ) 2,6-bis(mesityl)benzoic acid, MBTHx ) bis(N-methylbenzothiohydroxamato) anion, Me3TACN ) 1,4,7-trimeth-
yl-1,4,7-triazacyclonane, OEP ) dianion of octaethylporphyrin, OEP ) dianion of trans-7,8-dihydro-octaethylporphyrin, Piv ) pivalate, “S2”
) 1,2-benzenedithiolato-S,S′ dianion, TAML ) tetra-amido macrocyclic ligand,101 TMEN ) N,N,N′,N′-tetramethylethylenediamine, TMIP )
tris(methylimidazol-2-yl)phosphine, TPA ) tris(2-pyridylmethyl)amine, TTC ) tetrachlorocatecholato-O,O′ dianion, XDK ) acid anion of
m-xylenediamine bis(Kemp’s triacid)-imide.
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genases,63 (ii) nitrosyl complexes (19, 20, 24, 27), (iii)
porphyrin derivatives (6-8), and (iv) compounds with
multiple sulfur atoms in the coordination sphere (9, 12, 13,
26, 30, 31). Complexes 6 and 9 contain CO. With the
exception of [Fe(H2O)Cl5]2- (entry 25), we did not include
simple complexes containing 7-15 atoms due to the absence
of a complete package of experimental data. Many Möss-
bauer studies of such complexes were conducted over four
decades ago and are not accompanied by X-ray crystal
structures, whereas the recently deciphered crystal structures
with counterions such as Fe(H2O)6

3+ and Fe(CN)6
3- offer

little interesting in the configuration of these counterions to
warrant investigation by Mössbauer spectroscopy.

Some of these complexes have been included in the test
sets of others,15,16,28 but several were investigated theoreti-
cally in this work for the first time. No systematic examina-
tion of the electronic structure of these compounds was
attempted, for to do so would reach beyond the benchmark-
ing objectives of this work. Although we discuss some of
the numbers produced for the individual compounds, our
focus is on statistics and comparison of the general perfor-
mance of theoretical methods with respect to the IS and QS
properties.

Counterions or crystal inclusions were not included in
the systems in our test set for the following reasons. First,
the location of counterions was not always available in the
crystallographic data. Including counterions in some systems
and omitting them in others might introduce a bias that would
be undesirable in a benchmark study. Second, some coun-
terions were fairly large organic systems, containing more
than a dozen atoms each, such as BPh4

-, cocrystallized with
our VUNMIA system.80 Their inclusion and treatment within
a DFT scheme would make some of our calculations
prohibitively expensive. Third, our experimentation with
environment showed a marginal influence of counterions and
cocrystallized neutral molecules on the Mössbauer parameters
of the iron complex under study. This observation is in accord
with an earlier study21 that reports no change in predicted
isomer shift and quadrupole splitting upon inclusion of a
counterion in the DFT calculations. Although some theoreti-
cal studies provide special treatment of environment,20 many
other do not and still report accurate Mössbauer parameter
predictions.12,18,19

The experimental isomer shifts varied between 1.35 and
-0.07 mm/s, a typical experimental range for most iron-
containing complexes. FeO4

2-, often placed at the bottom
of test sets for its extraordinarily low isomer shift value,64

did not satisfy a number of the filtering criteria mentioned
in the Introduction (for instance, no data at liquid helium
temperature). There is a noticeable gap in experimental
isomer shifts between 0.67 and 1.00 mm/s in our data set.
This region, marking a transition between diiron(III) and
diiron(II) formal redox states, is also either very sparsely
populated or empty in other researchers’ data sets.15–17,29

The absolute value of the experimental quadrupole splittings
ranged from 0.22 to 4.01 mm/s. The slightly unusual
maximal value corresponds to distorted complex 12, the
DFT-predicted quadropole splitting of which is an outlier in
ref 28. Apart from the gap between 1.0 and 1.4 mm/s (which

does not seem to be a rare interval), the rest of the quadrupole
splittings in Table 1 are distributed more or less uniformly.

Isomer Shift. Multiple studies outline the quantum theory
of the Mössbauer isomer shift (see refs 65 and 66 and
references therein). The parametrization method, which
represents the isomer shift as depending linearly on the
electronic density on iron nuclei, F(0)

where R and C are empirically determined coefficients, has
been found to be accurate and robust in a great number of
DFT publications.13,15,17,29 This linear relationship has also
been observed in the complete active space self-consistent
field (CASSCF) calculations on a small test set.67 For an
alternative, nonempirical computation of the isomer shift,
which employs derivatives of the electronic energy with
respect to the size of the nonpoint-like nucleus and which is
more laborious, see refs 18, 51, 68, and 69. The slope R and
intercept C are typically obtained with the least-squares
method using a parametrization set of experimental isomer
shifts and theoretically computed densities F(0). Several high-
quality studies that attempt to match experimental and
theoretical values of the slope R are available.19,20,70 Because
the densities on the nuclei vary with the basis set and
functional used,44 each such combination necessitates a
separate parametrization (eq 1). Since many researchers are
likely to prefer different bases and ways of computing the
wave function they will have to perform a parametrization
of their own, but one way to simplify their task is to make
available the atomic coordinates of the entries of a large and
reliable test set as we do in the present work.

The mean unsigned errors (MUEs) obtained from the
X-ray geometries for 8 functionals and both basis sets are
given in Table 2. The results can be broadly classified into
two categories. For hybrid functionals such as B3LYP or
O3LYP, the data lie on a single straight line, providing a
parametrization (converting the calculated IS into the ex-
perimental IS) that can be applied to an arbitrary complex.
For many of the other functionals, including the LDA,
gradient-corrected functionals, and the M06 and M06-2X
functionals, the data can be better characterized as lying on
two parallel straight lines, with the location of each point
depending upon whether the Fe atoms have a formal
oxidation state of +2 or +3/+4. Using a dual parametrization
for these functionals substantially improves the results,
although it can create problems for molecules where the
assignment of formal oxidation state is problematic or
ambiguous, e.g., Fe-nitrosyl complexes, which are well
known to have a complex electronic structure in many
cases.72,73 We report results using both types of parametri-
zations for all functionals for completeness, although the
difference for the hybrid functionals is quite small. The
ability to use a single parametrization is an advantage for
the hybrid functionals, making them (in our view) the
approach of choice for computation of IS values.

The basis set effects are relatively minor, although the
larger and more flexible Partridge basis set unsurprisingly
yields slightly better linear correlations overall. Either basis
set can be judged suitable for practical applications. The

δ ) RF(0) + C (1)
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average errors reported in Table 2 represent a best-case
scenario; in reality, there will be additional noise due to the
use of DFT (as opposed to X-ray) geometries (discussed
further below) and also introduction of novel chemistry not
covered in this data set. Nevertheless, our results provide a
reasonable starting point for estimating an acceptable devia-
tion of theory from experiment, which we develop further
in the Discussion section.

We report the slope and intercept constants for all
combinations of the functionals and the basis sets in the
Supporting Information. Direct comparison of our slope
constants with the most accurate theoretical value available
to date, -0.31 ( 0.04 a0

3mm/s,20 is not possible because
our study did not include relativistic treatment. However,
our slope and intersect are in excellent agreement with those
obtained by others74 in a nonrelativistic calibration for the
B3LYP/Wachters combination. Additionally, if we use a
correction factor of 1.30 employed to scale nonrelativistic
densities to relativistic ones,74,75 our best performing functional/
basis combinations produce the R constant in the range from
-0.31 to -0.32 a0

3mm/s, in excellent agreement with the
best available theoretical value.

The optimized geometries produced mixed-quality isomer
shift results (see Figure 3 and compare it to Figure 1a). Most
of the +2 oxidation-type densities show a very good linear
correlation versus the experimental isomer shifts. However,
the +3,+4-type points are visibly quite scattered, showing
a poorer linear correlation. The two greatest outliers are the
structurally similar nitrosyl complexes Fe2(S-t-Bu)2(NO)2

(GIDKIN02) and Fe(NO)2(S(p-Me)Ph)2
- (SONMUE), the

former being particularly prominent. This discrepancy is all
the more remarkable for the fact that the outliers of this
magnitude have not been observed for any of the isomer
shifts computed from the experimental geometries. Because
the isomer shift of GIDKIN02 lies greatly beyond the rest
of the data points regardless of the functional used, we need
to seek the answer to this behavior in the optimized geometry
of the complex. Table 3 compares the experimental and DFT-
optimized geometries of the two above-mentioned outliers.
Clearly, our DFT optimization protocol does not reproduce
some of the geometrical elements of GIDKIN02 correctly.
The Fe-N and Fe-S distances are greatly overestimated,

Table 2. Isomer Shift MUE’s for the Data Set Presented in Table 1 Computed with the Wachters and Partridge-1 Basis Sets
and Tight Convergence Criteriaa

Wachters Partridge-1

functional MUE (+2) MUE (+3, +4) all MUE (+2) MUE (+3, +4) all

B3LYP 0.0283 0.0285 0.0324 0.0272 0.0238 0.0296
BPW91 0.0358 0.0289 0.0772 0.0349 0.0253 0.0733
M06 0.0334 0.0352 0.0370 0.0524 0.0344 0.0450
M06-2X 0.0380 0.0342 0.0426 0.0581 0.0345 0.0564
OLYP 0.0352 0.0321 0.0756 0.0372 0.0269 0.0703
O3LYP 0.0320 0.0291 0.0461 0.0285 0.0277 0.0420
PBE 0.0355 0.0291 0.0793 0.0350 0.0253 0.0746
SVWN5 0.0355 0.0318 0.0845 0.0383 0.0274 0.0822

a The MUE’s are given in mm/s. The +2 column includes the signals from iron atoms with the oxidation state +2. Similarly, the +3, +4
column includes the signals from iron atoms with the oxidation state +3 and +4. The ‘all’ column includes all signals. There are 17 signals
from the +2 irons and 18 signals from the +3, +4 ions.

Figure 1. Some linear correlations observed between electronic density on iron and experimental isomer shift for the X-ray-
based geometries. The data in red correspond to the oxidation state +2, and the data in blue correspond to oxidation states +3
and +4.

Table 3. Geometrical Parameters of the Complexes
Fe2(S-t-Bu)2(NO)2 (GIDKIN02) and Fe(NO)2(S(p-Me)Ph)2

-

(SONMUE) (which are the greatest outliers in Figure 3)
Obtained from Two Sources: DFT Optimization and X-ray
Crystallographya

GIDKIN02 SONMUE

parameter
DFT

optimization X-ray
DFT

optimization X-ray

d(Fe-N) 1.85 1.67 1.76 1.71
d(Fe-S) 2.38 2.25 2.38 2.33
d(N-O) 1.17 1.17 1.18 1.18
d(S-C) 1.90 1.87 1.78 1.80
∠(NFeN) 74.8 116.6 120.3 115.7
∠(SFeS) 100.1 106.2 115.0 111.9

a The distances are given in Angstroms, and the angles are in
degrees.
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and the N-Fe-N angle is much smaller than that reported
by X-ray crystallography. The rest of the optimized geometry
matches the experimental geometry quite accurately (com-
pare, for example, the N-O and S-C distances which almost
coincide). Some structural variations are also observed for
the optimized structure of the SONMUE complex, but they
are not as serious as in the case of GIDKIN02. The DFT
optimization of the other complexes did not result in obvious
structural incongruities.

Inspection of the isomer shift correlations for the other
combinations of the functional and the basis set (not shown)
obtained with the DFT-optimized geometries reveals a bigger
scatter of points in comparison with the correlations obtained
from the X-ray geometries, even when the obvious outliers
(for instance, GIDKIN02) are excluded. Apparently, the
structural inaccuracies introduced by the optimization method
outweigh the inaccuracies of the experimental determination
of atomic positions.

Quadrupole Splitting. The quadrupole splitting ∆EQ in
57Fe is the transition energy between the Iz ) (1/2 and Iz )
(3/2 substates of the nuclear excited state with I ) 3/2.
These substates EI, Iz originate from the interaction between
the nuclear quadrupole moment and the electric field gradient
created at the excited 57Fe nucleus by the surrounding nuclei
and electrons, eq 2,

where R, � are the Cartesian coordinates, QR�(I, Iz) are the
components of the nuclear quadrupole tensor, and VR� are
the derivatives of the environmental electric field potential
V with respect to the Cartesian coordinates

Substituting the expression for the quadrupole moment
components2 in the nuclear shell approximation76 into (eq
2) and taking the difference of the states with the appropriate
quantum numbers we arrive at the well-known formula used
to compute quadrupole splitting in zero magnetic field, eq 4,

where e is the absolute value of the electron charge, Q is the
nuclear electric quadrupole moment for the I ) 3/2 state (taken
to be 0.16 barn77), and Vk are the eigenvalues of the tensor VR�

with the convention that V3 has the maximal absolute value.
The sign of ∆EQ defines the relative position of the Iz )

(1/2 and Iz ) (3/2 states but it is usually not reported in
experimental studies. It is also not always reliably predicted
by theoretical calculations. Because the electric field satisfies
the Laplace’s equation, the eigenvalues of eq 3 sum up to
zero: V1 +V2 +V3 ) 0. When one of the eigenvalues, for
example V1, is much smaller in absolute value than the other
two, V3 is approximately the negative of V2. In such a
situation a small error in predicting the field V (due to the
basis set or the functional) might result in V3 changing sign,

because it is always defined as the largest by absolute value,
and flipping the sign of ∆EQ. For these reasons, we compare
only the absolute values of the quadrupole splittings, adopting
the approach of Noodleman and co-workers.28

Let us first discuss the data obtained from the X-ray
geometries. The MUE’s of the quadrupole splittings are
presented in Table 4, while the actual data points for a few
representative combinations of the functional and basis set
are shown in Figure 2. Figure 2a and 2b demonstrates some
of the best performers (O3LYP, Wachters and O3LYP,
Partridge-1, respectively), but Figure 2c illustrates the worst
combination M06-2X, Partridge-1. Note that the red line in
these plots is simply the y ) x function and not the best fit.
Looking at the first two of these figures we immediately
notice that the prediction of small (less than about 2.0
mm/s) quadrupole splittings is significantly more accurate
than that of the larger ones. This conclusion is corroborated
by the actual numbers in Table 4: the MUE’s for the region
<2.0 mm/s in experimental values [excluding Fe(OEC), or
BUYKUB10, an outlier in almost all cases] are two to three
times smaller than the overall MUE’s (including all points).
Except for the M06-2X functional, the Partridge-1 basis is
noticeably more accurate than Wachters. The two best
performers for the smaller QS are, just as in the case of the
IS, B3LYP and O3LYP. They produce a remarkable accuracy
of less than 0.1 mm/s on this region. Because some
applications are concerned solely with the absolute QS values
<2.0 mm/s,3,29 using either B3LYP or O3LYP in these
studies is highly recommended. The overall best performance
for the QS is shared by BPW91, OLYP, and PBE, with
O3LYP following closely behind. M06, parametrized on the
metal-containing compounds, brings a significant improve-
ment over the related M06-2X functional even though it
performs only slightly better than M06-2X for the IS. M06-
2X gives some of the worst agreements with the experimental
QS (see also Figure 2c). The second worst performer, after
M06-2X is, unsurprisingly, the LDA functional SVWN5.

The observation that the QS is predicted more accurately
for smaller values has not been reported before, to our
knowledge. The QS data published by some other research-
ers17,29 does not indicate a much greater prevalence of errors
in the region above 2.0 mm/s, although the quadrupole
splittings computed by Oldfield and co-workers12 with the
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Table 4. Quadrupole Splitting MUE’s for the Data Set
Presented in Table 1 Computed with the Wachters and
Partridge-1 Basis Sets and Tight Convergence Criteriaa

Wachters Partridge-1

functional <2.0 mm/s all <2.0 mm/s all

B3LYP 0.144 0.352 0.0952 0.337
BPW91 0.172 0.314 0.133 0.284
M06 0.140 0.332 0.114 0.304
M06-2X 0.208 0.496 0.250 0.532
OLYP 0.180 0.319 0.147 0.284
O3LYP 0.147 0.320 0.0937 0.291
PBE 0.175 0.329 0.136 0.283
SVWN5 0.175 0.410 0.149 0.384

a The MUE’s are given in mm/s. The <2.0 column includes the
signals whose experimental quadrupole splittings are less than 2.0
mm/s except the obvious outlier Fe(OEC) or BUYKUB10, which is
excluded. The ‘all’ column includes all the signals.
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B3LYP functional do appear to have greater errors for large
QS values. Currently, it is not clear if our observation is
simply a specious effect related to the accidental presence
of several outliers with |QS| > 2.0 mm/s in our data set. For
example, removal of the five outliers from Figure 2a and 2b
would not result in much better accuracy of QS prediction
in the region below 2.0 mm/s. Although we do not read much
importance into this curious imbalance between the regions
smaller and greater 2.0 mm/s, we think that more accurate
experimental data (conforming to our selection criteria from
the Introduction) are needed to make a conclusion.

Let us now discuss the QS outliers, paying greater attention
to the functionals that perform well (O3LYP, B3LYP). The
IS data did not reveal any obvious outliers as prominent as
those in Figure 2. There may be several reasons for this
observation. First, the determination of the QS from the
experiment has inherently a greater incidence of error than
the same procedure for the IS. The determination of IS
involves finding the middle point between two idealized
peaks of finite width. Each of these peaks is recorded with
a certain error of position (∆, so that the middle point is
determined with a maximal error of ∆ (when both peaks
have the positioning error of the same sign). The QS is
determined as the difference between the positions of these
peaks, so that the maximal error becomes 2∆ (when the peak
centering errors are of different signs). If peak positioning
errors dominate the rest of the errors, this analysis has a
consequence that particularly large QS errors would be
accompanied by particularly small IS errors and vice versa.
Second, the theoretical computation of the IS is more local
in nature, depending on the density of s-electrons on the iron
nuclei, which is mostly determined by the immediate
surroundings of the iron atom. The QS, in contrast, is
potentially influenced by long-distance effects, namely, the
overall symmetry of the electronic density, which is deter-
mined by all atoms of the system. In other words, the IS is
computed from the values of the s-orbitals at a certain point,
whereas QS requires integration over global density. Thus,
QS is more sensitive to small changes in geometry. More-
over, DFT functionals have the potential to mishandle the
global density because they typically incorporate either local
or not entirely satisfactory gradient-corrected density for-
mulas. Global errors in density would be less important in
the typical optimization of DFT functionals than the local

errors. Finally, solvation effects, counterion effects, possible
protonation of ligands away from the iron atoms, and the
error of placement of hydrogen atoms in X-ray structures
all would produce a greater influence on the QS than on the
IS.

The greatest QS outlier is a small distorted complex
Fe(DTSQ)2

2- (PTSQFE10) with the unusually large experi-
mental QS value (over 4.0 mm/s). This QS is greatly
underestimated by almost all DFT functionals studied in this
work (except M06-2X) by 1.0 mm/s or more. Interestingly,
the same complex also turned out to be the largest outlier
among 21 complexes in the recent work by Noodleman and
co-workers.28 The B3LYP geometry optimization starting
from the X-ray geometry converged to a symmetric structure,
which, however, only increased the discrepancy between
experiment and theory. The inclusion of the two bulky
PPh4

4+ counterions PTSQFE10 cocrystallized with Fe-
(DTSQ)2

2- typically did not alleviate the problem (only
M06-2X produced a slight improvement). There is another
compound in our data set taken from the same paper where
Fe(DTSQ)2

2- was originally described along with its Möss-
bauer and X-ray data,87 Fe(SPh)4

2- (PTHPFE10). Its com-
puted QS is in an excellent agreement with the experimen-
tal value. The issue about the greatest QS outlier will per-
haps be clarified when the Mössbauer characteristics of
Fe(DTSQ)2

2- are computed by some other ab initio ap-
proach, preferably including multiple determinants, which
would be feasible in view of the small size of the complex.

Among some noticeable outliers in Figure 2a and 2b are
a group of diiron, dicarboxylate complexes with small
coupling constants J (SISKOU, VUPJUL, VUPJOF). The
QS of the first one (SISKOU) is regularly overestimated by
all the functionals by as much as 1.0 mm/s in the worst cases,
whereas the QS of the latter two vary substantially from
functional to functional: either seriously overestimated
(B3LYP, O3LYP, M06-2X), somewhat underestimated (PBE,
OLYP), or seriously underestimated (SVWN5). VUPJUL and
VUPJOF contain a protonated oxo moiety in a critical
bridging position: an error in the location of the protons might
have a large effect on the computed QS.

FATBOR, another (partial) outlier in QS (as predicted by
B3LYP, O3LYP, and M06-2X), is a tri-iron carbonyl
complex with two equivalent terminal low-spin Fe(II) atoms
(having low IS and QS) and one central high-spin Fe(II) atom

Figure 2. Some comparisons between the experimental and computed absolute values on the quadrupole splittings. The red
line is y ) x: the points lying on it represent perfect agreement between experiment and theory. The obvious outliers are indicated
by their Cambridge Structural Database code which can also be found in Table 1.
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(having large IS and QS). The calculations show a much
better agreement with the low-spin signals and a significant
overestimation of the high-spin quadrupole splittings. In any
case, all eight functionals show good qualitative agreement
with experiment, predicting high and low IS and QS values
for two different types of Fe atoms, as described, whereas
BPW91, OLYP, PBE, and SVWN5 are close to the quantita-
tive agreement.

The last minigroup of QS outliers consists of porphyrin
complexes Fe(OEC) (BUYKUB10) and Fe(OEP) (DED-
WUE). The QS of Fe(OEC) in both bases ranges from 1.0
mm/s and smaller (BPW91) up to almost 4.0 mm/s (M06-
2X). It is puzzling that none of the combinations of the
functional and the basis comes close to the experimental
quadrupole splitting (1.71 mm/s). The closest agreement is
registered for O3LYP/Partridge-1 (2.42 mm/s). A related
compound Fe(OEP) shows a smaller scattering range of
quadrupole splittings than Fe(OEC), but the predicted QS is
highly functional dependent. However, here O3LYP yields a
very good agreement with its experimental value (2.55 mm/s)
in both basis sets, although the other functionals are off by
1.0 mm/s or more, both under- and overestimating. Some-
what surprisingly then, the computed QS of a related
porphyrin complex Fe(OEP)CO (YEQPOA) has a quantita-
tive agreement with the experiment in almost all the
functionals (except M06 and M06-2X) and bases, with little
variation from approach to approach. The work of Oldfield
and co-workers12 reports similar large overestimations of the
QS by the B3LYP functional and the Wachters basis set for
some porphyrin-based compounds and a more balanced
performance of BPW91 on the same compounds. Although
we and the cited work studied different porphyrin derivatives
and the absolute values of overestimations by B3LYP and
underestimations by BPW91 differ, there is an agreement
in the trend.

Overall, we find some of the QS outliers (FATBOR,
DEDWUE) in qualitative agreement with the experiment,
while some others (PTSQFE10, BUYKUB10, SISKOU,
VUPJUL, VUPJOF) are probably difficult cases which
require further investigation by more reliable theoretical
methods than DFT.

Now, let us turn to the quadrupole splitting computed for
the DFT-optimized geometries. Figure 4 juxtaposes the
quadrupole splittings computed with the B3LYP/Partridge-1
method for the theoretical and experimental geometries. This
particular method serves as a typical case, and we believe
its results are good for illustrative purposes. The overall
pattern of data points in both sides of Figure 4, each side
representing one type of geometry, is quite similar: substan-
tially better agreement with the experiment <2.0 mm/s and
a bigger scatter and more outliers in the region >2.0 mm/s.
However, both visually and quantitatively, the accuracy of
prediction in the case of the DFT-optimized geometries is
worse. The MUE’s in the region <2.0 mm/s are 0.168 and
0.0952 mm/s for the theoretical and experimental geometries,
respectively. The MUE’s for all 35 points are 0.381 and
0.337 mm/s, respectively. The similar situation is seen for
all other combinations of the functional and the basis, again
demonstrating, in parallel with the isomer shift data, that the

optimization of the geometries has been somewhat detri-
mental for the Mössbauer calculations.

After the optimization, at least three minor outliers
(VOCBAQ, GIDKIN02, RABHAD) and one major one
(SOCVUB) appeared (compare Figure 4a and 4b) in the
region <2.0 mm/s. It is interesting that all these structures
are of nonchelate type, being nonrigid and with a geometry
that is therefore more likely to be distorted by the optimiza-
tion method. The experimental SOCVUB structure was
already a slight outlier in Figure 4b, and its optimization
strongly deteriorated agreement with the experiment. The
large outlier BUYKUB10 becomes an even larger one after
the optimization. The DFT-optimized GIDKIN02 structure
also produced an outlier in the isomer shift calibrations
(Figure 3). In the region >2.0 mm/s, regardless of the
geometry type, essentially the same outliers are observed
(with some alterations of their positions, especially notable
for VOFLOR and SISKOU).

Application to Methane Monooxygenase Intermediates.
The soluble methane monooxygenase hydroxylase (MMOH)
is a well-studied enzyme hosting a diiron active site that
catalyzes the oxidation of methane to methanol.53 Its catalytic
cycle involves several intermediates with different oxidation
states of iron atoms, and we have been studying these
intermediates quite extensively in the last several years, both
with DFT103,104 and QM/MM62 methods. These intermedi-
ates are rather short lived so that their structures cannot be
derived from X-ray crystallography. However, their Möss-
bauer spectra are available, and therefore, the computational
Mössbauer approach becomes an important tool for inves-
tigating their structures. Han and Noodleman recently
computed the Mössbauer parameters of several candidate
structures for the key intermediates P and Q.3,16,29,105

Comparison with the experimental data allowed these authors
to select the most probable structures.

Here, as an application to our benchmarking results, we
are computing the Mössbauer characteristics of the same

Figure 3. Linear correlations observed between electronic
density on iron and experimental isomer shift computed with
the B3LYP functional and Partridge-1 basis set for the DFT-
based geometries. The data in red correspond to the oxidation
state +2, and the data in blue correspond to the oxidation
states +3 and +4.
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intermediates but using presumably more accurate geom-
etries, those optimized through the QM/MM approach in our
recent work.62 In contrast, the models of Han and Noodleman
were obtained from the conductor-like screening solvation
model (COSMO),107,108 which essentially utilizes a DFT
method treating molecular systems embedded in a molecular-
shaped cavity and surrounded by a dielectric medium.

As an initial calibration, we compute the Mössbauer
parameters for a model of the reduced MMOH enzyme, for
which there is a crystal structure.109 Hence, for this case,
uncertainty about the geometry should be relatively unim-
portant (although errors from the QM/MM geometry opti-
mization will still be present). The results shown in Table 5
indicate good agreement for the IS. For the QS, there are
two sets of experiments; our results are more consistent with
the second set than with the first and reasonable in either
case. These calculations give some indication of what to
expect in a realistic, complex application, where there can
be noise and uncertainty in both theory and experiment.

In ref 62 we identified four P candidate structures and one
Q structure. The schematic diagrams of their active sites are
given in Figure 5. In Table 5 we bring together the
Mössbauer parameters of these models and the models from
the works of Han and Noodleman.3,29 Since these authors
used somewhat different geometries the juxtaposition of our
models with theirs is approximate. In placing the two models
in the same row for comparison we tried to preserve the type
of coordination of the oxygen and the ligands to the iron
atoms. Then, because Han and Noodleman used different
functionals to compute Mossbauer characteristics and they
sometimes produced slightly contradictory results we select
those IS and QS values computed by these authors which
seem to have the best agreement with the experiment and
those structures that are selected by the authors as the most
likely.

As our computation methodology in the present study, we
take the best combination of the functional and basis to
compute the IS (B3LYP/Partridge-1) and equivalently with

Figure 4. Comparison of the quadrupole splittings computed with the B3LYP functional and Partridge-1 basis set using the DFT (a)
and X-ray (b) geometries. The red line is y ) x: the points lying on it represent perfect agreement between experiment and theory.
The obvious outliers are indicated by their Cambridge Structural Database code which can also be found in Table 1.

Table 5. Comparison of the Isomer Shifts and the Quadrupole Splittings of MMOH Reduced (Re) Structure As Well As the
Peroxo and Q Intermediates Computed in This Work and in the Works of Han and Noodleman3,29a

this work refs 3 and 29 experiment

form δ |QS| δ |QS| δ |QS|

Re 1.27 3.00 1.26 2.87 1.3 2.87; 3.1
1.16 2.46 1.34 3.00 1.3 2.87; 2.4-3.0

P-1 (µ-η2, η1) 0.62 1.03 0.66 1.51
0.78 0.44 0.66 1.51

P-2 (µ-η2, η2) 0.57 0.77 0.60 0.57 0.66 1.51
0.63 1.15 0.57 0.97 0.66 1.51

P-3 (A-µ-1,2) 0.73 1.60 0.72 1.69 0.66 1.51
0.70 1.25 0.63 1.12 0.66 1.51

P-4 (S-µ-1,2) 0.57 1.86 0.64 1.81 0.66 1.51
0.58 1.31 0.61 1.21 0.66 1.51

Q 0.11 0.78 0.18 0.33 0.17, 0.21 0.53, 0.68
0.38 0.69 0.22 0.33 0.17, 0.14 0.53, 0.55

a Our geometries were optimized by QM/MM,62 whereas those in refs 3 and 29 were produced by the DFT in continuous dielectric
medium (the so-called COSMO model). The juxtaposition of the coordinations is approximate since the geometries in the same row do not
exactly coincide. For the schematic geometries of the QM/MM-optimized intermediates see Figure 4. The IS and QS values of this work are
computed with the methods that give the most accurate statistics: B3LYP/Partridge-1 and O3LYP/Partridge-1, respectively. The Mossbauer
characteristics corresponding to the geometries of Han and Noodleman were taken from their works.3,29
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QS (O3LYP/Partridge-1). The corresponding values are given
in Table 5. Analyzing the results of our calculations for the
four peroxo models, we conclude that the P-3 model (A-µ-
1,2) unequivocally has the closest agreement with the
experiment. This type of coordination was in fact chosen as
most likely by Han and Noodleman,3 despite some confusion
created by multiple energetic and Mössbauer data available
from two functionals (OPBE and PW91). This type of
structure is also in agreement with the vibrational analysis
performed by the groups of Solomon and Yoshizawa.110,111

All other peroxo structures listed in Table 5 have the
Mössbauer characteristics that are substantially farther from
experiment than those of P-3. The computed IS of the P-3
model produced by us and the group of Noodleman have
about the same proximity to the experimental values. Our
QS range is ‘narrower’ however (1.60 and 1.25 mm/s),
bringing the signals from both iron centers within the error
bars of the single experimental value (1.51 mm/s). Encourag-
ingly, the other two types of structures in which we and the
group of Noodleman overlap (µ-η2,η2, S-µ-1,2) are in good
qualitative and perhaps even quantitative agreement with one
another. Thus, we have to conclude that despite the fact that
our previous QM/MM calculations predicted the lowest
energy for the P-2 (µ-η2,η2) structure, the analysis of the
computationally obtained vibrational and Mössbauer spectra
converges unambiguously on the single type of structure,
P-3 (A-µ-1,2). At the same time this apparent consensus
should not categorically rule out the P-2 (µ-η2,η2) structure
as a participant in the MMOH catalytic cycle. It may be still
energetically most stable but for some (for example, kinetic)
reason undetectable in the Mössbauer experiment. Addition-
ally, recent careful experimental analysis of the MMOH
peroxo intermediates revealed the presence of the second
peroxo structure the Mössbauer spectra of which are currently
unknown.112

Finally, let us discuss the Mössbauer data for the Q
intermediate (which is a Fe4+, Fe4+ species) given in Table
5. The table indicates that there were two corresponding
experimental Mössbauer measurements, which produced
somewhat different qualitative and quantitative results. The
first experiment showed only one signal, but the second one
gave two similar signals in both IS and QS. The central
geometry of our Q structure is slightly distorted, with two
oxygens that form the ‘diamond’ core being closer to Fe2

than Fe1.62 Therefore, two types of signals in the Mössbauer
experiment would be more expected than one. In this regard,
our calculations qualitatively agree with the second experi-

ment. The calculation of Han and Noodleman, however,
produced two different IS signals but only one QS aggregate
signal. Our isomer shift has worse agreement with the
experiment than Han and Noodleman’s, but our quadrupole
splitting is closer to the experiment than theirs. The Q
structure initially proposed by these authors as the most likely
model had a somewhat better agreement with the experi-
mental QS (two signals 0.70 and 0.37 mm/s).29 Unfortu-
nately, this structure involved a suspicious proton transfer
from the coordinated water to one of the histidine rings and
was later dismissed on energetic and spectroscopic grounds.3

It looks like our computed IS and QS values lie within the
error bars and are in good semiquantitative agreement with
the experiment.

The application to the MMOH intermediates serves as a
good example of the power and utility of combining
energetics calculations with Mössbauer spectral calculations
in cases where the structures are not experimentally deter-
mined, agreeing with conclusions drawn by the group of
Noodleman. By applying the statistically most accurate
method(s) to compute the IS and QS, we arrived immediately
at very good qualitative (and perhaps even quantitative)
agreement with the experiment, helping resolve some of the
questions that are still disputed in the MMOH intermediates
research.

Discussion

We summarize the conclusions that can be drawn with regard
to the accuracy of DFT calculations of Mössbauer param-
eters, including the dependence upon the geometry and the
functional employed. We first discuss the results obtained
when the X-ray structures are used for the geometry and
then examine the effect of performing geometry optimization.
An important goal is to understand to what degree one can
rely upon Mössbauer calculations in a system like an iron-
containing protein to provide accurate discrimination among
alternative structures. If the noise in the calculation is larger
than the difference predicted in the parameters for the
alternative structures, it would be inappropriate to draw any
conclusions one way or another. Hence, understanding the
level of noise expected in a realistic application is essential
if the method is to be profitably used to help in assigning
structures in cases where crystallography cannot be carried
out. The discussion below focuses on the optimal functionals
and basis sets determined in our benchmarking studies.

As indicated above, we first discuss the errors observed
for calculations of the IS and QS using X-ray geometries.

Figure 5. Schematic diagrams of the MMOH intermediates active sites. P stands for Fe3+,Fe3+ peroxo models and Q represents
the Fe4+,Fe4+ species.
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For the IS, errors in the range 0.02-0.04 mm/s are observed.
However, since this range is observed after the parametriza-
tion on the training set, the error is likely to grow somewhat
if the methodology is applied to an independent test set.
Nevertheless, because the isomer shift data points form a
good linear correlation, the MUE that would be observed
on a test set is not expected to be much larger than 0.02-0.04
mm/s. For QS, training set errors in the range of 0.15 for
the QS less than 2.0 mm/s and 0.4 for QS greater than 2.0
mm/s are observed.

The effects of geometry optimization are more specific
and system dependent. As noted in above, there are specific
complexes and chemistries where DFT geometry optimiza-
tion has significant problems reproducing the experimentally
observed geometry. In these cases, substantial errors can be
introduced from the geometry optimization. However, for
typical cases, where the geometry optimization yields a result
that agrees reasonably well with the experiment, the deviation
between the Mössbauer parameters computed at the two
geometries is small. Hence, the principal concern when
geometry optimization is employed is whether one is dealing
with a system with a potential energy surface that is poorly
modeled by the variant of the DFT being employed.
However, this is a serious concern in any case, whether one
is computing Mössbauer parameters or just energetics; one
has to be suspicious of the quality of all the results if the
geometry is in poor agreement with experiment. Repairing
the occasional, but sometimes large, errors in DFT geom-
etries, particularly for transition metals, thus should be a high
priority in the development of the next generation of
functionals but will not be discussed further here.

In considering what constitutes “acceptable” agreement
in a Mössbauer calculation for a complex system such as an
iron-containing protein, somewhat larger error bars have to
be used than the MUE averaged over all of the data set, as
the case at hand could lie on the high side of the error
distribution. If calculations are being done with a crystal
structure, an error on the order of 0.1 mm/s for the IS, 0.2
mm/s for the QS if less than 2.0 mm/s, and 0.4 mm/s if the
QS is greater than 2.0 mm/s would appear to be reasonable
estimates based on our results. If geometry optimization has
to be carried out, one might increase the expected level of
error by 20-30%, assuming that the geometry is in fact not
seriously deviant from the experiment. By this criterion, the
use of the Mössbauer data to choose between the proposed
MMOH peroxo structures is clear cut, and the results for
the P-3 peroxo model are in reasonable agreement with the
experimental data. Additionally, the Mössbauer data reported
in Table 5 for the reduced MMOH structure modeled through
geometry optimization from an oxidized MMOH structure,
the X-ray geometry of which is available, lie, satisfactorily,
within the error bars. For Q, the IS from the Noodleman
group calculations are in good agreement with experiment,
but one of the Fe atoms in our calculations is a little outside
the range proposed above. On the other hand, our QS results
for Q are in good agreement with the experiment, whereas
the Noodleman group results are outside of the suggested
error bounds, given that the QS is less than 2.0 mm/s. Since
the Q models that we and the Noodleman group are

employing are very similar but not identical and we are using
different functionals, what these data suggest is that we are
both probably quite close to the correct structure but that
some detailed refinement of the geometry would be required
to better match the IS and QS from experiment. This result
is unsurprising in that the conformational potential energy
surface of a protein is much more complicated than that of
the small molecules examined in our training set, and so we
can expect to see greater theory/experiment deviations based
on errors in the geometry on the complex surface, which
contains a large number of minima that are closely spaced
in energy.

In summary, the overall results, both on the training set
and for the MMOH calculations, are encouraging with
respect to the goal of employing Mössbauer data, in
combination with energetic criteria, to identify structures in
iron-containing proteins. However, there are clearly some
quantitative issues to address related to noise introduced by
the complexity of the protein potential energy surface.

Conclusions

This work assembled a high-quality, good-size test set (31
compounds; 35 data points) for the benchmarking of isomer
shifts and quadrupole splittings. We selected the entries of
the test set on the basis of availability of their Mössbauer
spectra at liquid helium temperature as well as X-ray
crystallographic data. Eight functionals and two bases (on
iron atoms) were applied to determine which combination
predicted more accurate results, and two sources of geom-
etries (DFT optimized and crystallographic) were used. The
geometries obtained through the optimization (B3LYP
functional, pseudospecral approach, LACVP* basis on the
irons, and 6-31G* on the other atoms) yielded somewhat
worse Mössbauer results (greater scatter of points and more
outliers). Nonchelate structures were particularly affected by
the optimization, probably due to their nonrigidity. It is worth
seeking a method for a more accurate optimization of
nonchelate metal geometries in a future publication, but for
now the usage of X-ray geometries should not be shunned
as they produce quite accurate results. For example, the mean
unsigned error of quadrupole splitting is less than 0.1 mm/s
in the region <2.0 mm/s (if one obvious outlier is excluded)
and below 0.3 mm/s in the whole region (all data points are
counted in). The conclusions below are based on the X-ray
geometries.

The isomer shift statistics indicate that the best functional
to compute the isomer shift is B3LYP with O3LYP a close
second. Partridge-1 set on iron atoms shows somewhat better
performance than Wachters basis. M06 and especially M06-
2X show some of the worst IS performance. The best
functional to compute quadrupole splitting is O3LYP in the
Partridge-1 basis set with B3LYP being the second best.
M06-2X produces a large number of outliers and the worst
overall QS performance. The Wachters basis is appreciably
smaller, and the quality of the density computed with it using
the loose convergence criteria is sufficient to compute good-
quality isomer shifts and quadrupole splittings. Thus, the
combination of the Wachters basis set and lower-quality
wave function may be used for the rough estimate of the
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Mössbauer characteristics in situations where many different
models have to be filtered against the experimental data. For
higher quality computations of the Mössbauer spectra, the
well-converged wave function computed with the Partridge-1
basis set should be used. To summarize, O3LYP and B3LYP
in combination with the Partridge-1 basis on iron atoms show
the best performance and SVWN5 and M06-2X are not
recommended for Mössbauer calculations.

The results of our statistical analysis were used to select
the best computational methods for predicting the Möbssauer
spectra of the P and Q intermediates of the enzyme methane
monooxygenase hydroxylase (MMOH). We compare our
results to those of Han and Noodleman, who recently applied
some of their Möbssauer DFT methods to determine which
of the P and Q structural candidates was most likely to
represent the experimental structure. For P structures, our
results agree comfortably with Han and Noodleman’s,
whereas for the Q structure we find a significantly better
agreement in the quadrupole splitting albeit a slightly worse
one in the isomer shift. It is also important to emphasize
what we see as a methodological improvement on the work
of Han and Noodleman. Whereas their results were obtained
with the functional and basis that best match the experimental
Mössbauer parameters of the systems of interest, we treated
our target systems with the functional/basis set combination
that was first found the most accurate on an extensive and
independent test set, which is a less biased approach.
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Abstract: Understanding the temperature effect in the folding of multiple �-hairpins with
different sequence (although based on an approximate solution model) makes possible
quantitative characterization of the different contributing factors that are difficult to be obtained
from single temperature studies. The detailed thermodynamics analyses performed in this
article provide at least a semiquantitative understanding of how temperature and positions
affect the stability of individual backbone hydrogen bonds in �-hairpin structures. These
effects are then rationalized, according to the separation into enthalpic and entropic
contributions. The formation of backbone hydrogen bonds at the terminal position is favored
at low temperatures and those near the turn become more favorable at high temperatures,
as a result of the differences in their formation entropy. Regardless of the differences in the
turn stability, the side-chain hydrophobicity, and the room temperature folding mechanism
of these �-hairpins, there is a shift to the “zip-out” mechanism in the assembling of backbone
hydrogen bonds as temperature increases for all polypeptides under study. In addition, it
was also observed that although the backbone hydrogen-bond formation shows a strong
dependence on temperature, the formation order of the three structural elements of �-hairpin
(the turn, hydrophobic core cluster, and hydrogen-bond assembly) along the minimum free
energy pathway in the free energy landscapes appears to be only sequence dependent
and largely unaffected by the temperature change.

Introduction

As important model systems for protein folding, �-hairpin
structured polypeptides have been the subject of a large
number of experimental and theoretical studies.1-15 The
popular �-hairpins include not only fragments of natural
proteins (e.g., those from the B1 domain of protein G (GB1
peptide),10,16 ubiquitin,14 and human chorionic gonadotro-
pin)17 but also artificially designed peptides (e.g., the
tryptophan zipper series, TRPZIP 1-6).11 Since the folding
of �-hairpins is a cooperative process which largely re-
sembles that of complex proteins,8,10 the understanding of
their folding mechanism and kinetics is of great interest. A
great number of mechanistic studies have been performed,
and different folding mechanisms have been proposed. These

mechanisms mainly differ in the arrangement of the impor-
tant structural elements, such as the hydrophobic core cluster,
the �-turn, and backbone hydrogen bonds. For instance, the
laser-induced temperature-jump experiment10 and the lattice
Monte Carlo (MC) simulation18 on the GB1 peptide sug-
gested a “zipping” or “hydrogen-bond centric” mechanism.
The folding of a �-hairpin starts from the turn and propagates
to the terminus. During this process, the native backbone
hydrogen bonds are formed. At the last stage, the hydro-
phobic core is packed. A modified version of the zipping
model in which the hydrogen-bond formation instead of
hydrophobic core packing occurs at last was also proposed
based on molecular dynamics (MD) simulations on a GB1
peptide.19 On the other hand, “hydrophobic core centric”
mechanism as favored by several theoretical simulations4,20-24

postulated that the hydrophobic core is packed first, during
which a few backbone hydrogen bonds could also form. The
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final stage of folding in this model consists of the formation
of the remaining hydrogen bonds as well as the native turn
structure.

These folding mechanisms of the �-hairpin are surmised
based on the experimental observations and the simulation
results. To date, many different all-atom force fields have
been used for the computational simulations of �-hairpins,
e.g., CHARMM, AMBER, OPLS, and GROMOS96, em-
ployed with either explicit or implicit solvent models.
Different force fields favor different secondary structures,
e.g., of the AMBER all-atom force fields, it is well-known
that FF96 favors �-structures, whereas FF94, FF99, and FF03
favor R-helical conformations.25-28 On the other hand, the
explicit solvent model is more desirable for elucidating the
details of protein folding pathways at the cost of enormous
CPU time, whereas the implicit solvent models are developed
to economize the computation time with the loss of simula-
tion precision. The most popular implicit solvent model is
the generalized Born/surface area (GB/SA) model.29 One of
the potential sources for the inconsistency among these
folding mechanisms mentioned above might be the usage
of different force fields and solvent models in these
simulations.

The question is: On the premise of saving the computation
time, which force field and implicit solvent model should
we use to best describe the folding pathway of �-hairpins?
To answer this question, Zhou performed the replica
exchange molecular dynamics (REMD) simulations on the
folding of GB1 peptide with different force fields in
combination with different implicit models and compared
the results to those from explicit solvent models.30 Of all
implicit solvent models tested, only AMBER FF96/GBSA
produced reasonable results comparable to the explicit
solvent models.

More recently, Shell et al. tested the stability of several
polypeptides (GB1 peptide, TRPZIP2, C peptide, and EK
helix) with AMBER force fields and several versions of the
GB/SA model.31 It showed that the combination of FF96
with GBOBC model (igb)5)32 is the best choice to balance
the R-helix and �-hairpin tendencies of the polypeptides
tested. We also ran MD simulation on the folding of GB1
peptide using FF96 force field with both GBOBC and GBn
(igb ) 7)33 models and compared the results to MD
simulation using FF96 and TIP3P explicit solvent model.34

The results showed that the combination of FF96 with
GBOBC model generates the more consistent free energy
landscapes compared to those in explicit solvent model and
therefore is better at describing the folding of GB1 peptide.34

Furthermore, Ozkan et al. ran the REMD simulations with
the zipping and assembly (ZA) search strategy on the folding
of nine proteins, including both R- and �-secondary struc-
tures, and observed that FF96 force field, combined with GB/
SA model, is best balanced for various secondary structures
compared to other force fields.35 All information mentioned
above showed that although the combination of AMBER
FF96 and GBOBC model might generate the folding ther-
modynamics data (such as folding/unfolding energy barriers)
with the exact values inconsistent (not far away) with those
in the explicit solvent simulation,30 it is still good at depicting

the overall folding scene of �-hairpin. The latter is more
interesting for us and is the main issue in the present study.

To distinguish between different folding mechanisms as
mentioned above by quantifying the thermodynamics of the
folding of �-structured polypeptides and, more importantly,
to examine the sequence dependence in their folding mech-
anisms, in the recent study we ran MD simulations on the
folding of a series of polypeptides using the integrated
tempering sampling (ITS)36,37 method and performed detailed
folding thermodynamics analyses on these polypeptides at
room temperature.38 All polypeptides are modeled using the
AMBER FF96 force field39 and the GBOBC model,32 the best
force field and implicit solvent model combination. The
advantage of this study is that the usage of the enhanced
energy sampling method ITS allows the simulation to sample
the potential energy surface thoroughly and thus to capture
plenty of polypeptide configurations and, to some extent,
reduces the influence of the force field and implicit solvent
model.

It is worth noting that all theoretical models of �-hairpin
folding mentioned above are based on the studies of a single
system, GB1 peptide. A systematic study on the sequence
influence of the folding mechanism of �-structures has not
been carried out previously and therefore becomes very
necessary. The systems in our study include peptide 1
(sequence: SESYINDPDGTWTVTE),40 GB1 (sequence:
GEWTYDDATKTFTVTE, PDB code: 2GB1),41 TRPZIP2
(sequence: SWTWENGKWTWK, PDB code: 1LE1),11 and
TRPZIP4 (sequence: GEWTWDDATKTWTWTE, PDB
code: 1LE3).11 The native structures of the four polypeptides
are shown in Figure 1 (backbone hydrogen bonds (HBs 1-6)
are named from the terminus to the turn positions in all
polypeptides. For TRPZIP2, HB1 located at the terminus is
not accounted in the data analysis due to its high instability).
The sequence differences among these polypeptides are in
their turn structure (either type I or type I′) and side-chain
hydrophobicity. TRPZIP2 and TRPZIP4 were designed based
on the wild-type GB1 peptide with modified turn sequences
and/or hydrophobic core cluster composition. Both of them
exhibit reversible and highly cooperative thermal unfolding
transition in solution.11 The fourth hairpin, peptide 1,
possesses a pair of very weak hydrophobic interactions but
has a very stable (type I′) turn.40,42 Consequently, the folded
peptide 1 and TRPZIP2 but not GB1 or TRPZIP4 possess
stable turn structures. On the other hand, TRPZIP2 and
TRPZIP4 possess very strong hydrophobic interactions,
which are largely absent for GB1 and peptide 1.

Our folding free energy landscape calculations for the four
polypeptides at room temperature showed that the folding
mechanism of a �-hairpin is strongly dependent on its turn
stability and side-chain hydrophobicity.38 The stable turns
of peptide 1 and TRPZIP2 make the turn formation a
barrierless and spontaneous process in comparison with the
formation of the hydrophobic core and backbone hydrogen
bonds, while the turn formation in the other two polypeptides
has to overcome significant free energy barriers and becomes
the rate-limiting step in the hairpin folding process. There-
fore, the turn stability is the key element in determining the
formation order of the structural elements of a �-hairpin.
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This is perfectly consistent with the observation in the static
IR and CD spectroscopy, and the IR temperature jump
experiments by Gai and co-workers, which suggested that
the turn plays a key role in the folding of �-hairpin; a strong
turn-promoting sequence increases the stability of a �-hairpin
by increasing its folding rates.43,44 More interestingly, both
turn structure and side-chain hydrophobicity were observed
to strongly affect the backbone hydrogen-bond formation.38

For instance, the stable turn of TRPZIP2 strongly promotes
the formation of hydrogen bonds near the turn, and the
hydrogen-bond formation follows a “zip-out” mechanism.45

In contrast, the unstable turn of TRPZIP4 makes difficult
the formation of the inner hydrogen bonds (HB5 and HB6).
At the same time the strong hydrophobic interactions among
the four tryptophan residues in TRPZIP4 allow the easy
formation of the hydrogen bonds in the middle of the strands
(H3 and H4), which is then followed by the zipping of the
rest of the hydrogen bonds, both near the turn and the
terminus.38

In this article, based on the folding simulation data
obtained earlier38 we performed detailed analyses on the
temperature-dependent folding/unfolding thermodynamics for
these polypeptides without explicitly considering the tem-
perature effects in solvation, to understand in more detail
the mechanisms of �-hairpin formation. We calculated the
unfolding free energy of individual polypeptides and ana-
lyzed the stability of individual backbone hydrogen bonds
in each polypeptide in a large temperature range (270-380
K). These detailed calculations allow us to determine
important thermodynamic parameters, such as the melting
temperature and the entropy and enthalpy changes in protein
folding and in individual hydrogen-bond formation. As a

result of using the approximate solvation model (GBOBC

model), as shown later, the calculated thermodynamics
parameters, such as the melting temperatures, of all polypep-
tides are in rough agreement with experiments. Nevertheless,
these results should be considered as qualitative; through
these analyses, we could quantitatively distinguish the
enthalpic and entropic contributions in the formation of native
�-hairpin structures as well as individual backbone hydrogen
bonds and thus try to understand quantitatively the sequence
and the temperature dependence of hairpin formation.

It is worth noting that in a very recent article, Tokmakoff
and co-workers reported their experimental observation of
the temperature-dependent stability of the backbone hydrogen
bonds of TRPZIP2 studied by isotope-edited two-dimensional
infrared spectroscopy.46 It was observed in this experiment
that as temperature increases from 298 to 358 K, the turn
region and its neighboring backbone hydrogen bond (HB6)
become more stable, whereas the hydrogen bond at the
terminus (HB2) is easily broken. The hydrogen bonds in the
middle of the strands (HB3 and HB4) keep contacting at all
temperature, whereas their thermal disorder is increased. This
is in nice agreement with our simulation results for TRPZIP2
in the present study, which demonstrates that the methodol-
ogy used here (AMBER FF96 combined with GBOBC

implicit model and ITS sampling method) does provide
reasonable qualitative descriptions of �-hairpin folding.

Materials and Methods

All MD simulations were performed using AMBER 9.0
package. In the folding simulations of all polypeptides,
GBOBC implicit solvent model32,34 was used. The polypep-

Figure 1. Folded structures of (a) peptide 1, (b) TRPZIP2, (c) GB1, and (d) TRPZIP4 polypeptides obtained in MD simulations
(blue color) in comparison to their corresponding native structures (red color). The hydrophobic core is shown in licorice model,
and backbone hydrogen bonds are represented by dash lines. (e) Time series of CR_rmsd value in the typical trajectories of
peptide and TRPZIP4.
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tides were modeled with AMBER FF96 all-atom force
field.39 In these simulations, the salt concentration is set to
0.2 M, and the default surface tension is 0.005 kcal/mol/Å2.
The SHAKE algorithm47 with a relative geometric tolerance
of 10-5 is used to constrain all chemical bonds. No
nonbonded cutoff was used in simulations. For each polypep-
tide, multiple independent trajectories were carried out for
several hundred nanoseconds. In each trajectory, the fully
extended structure of a polypeptide was first subjected to
2500 steps of minimization, then the temperature of the
system was established by velocity rearrangement from a
Maxwell-Boltzmann distribution at 300 K. After that the
system was maintained at 300 K using the weak-coupling
algorithm with a coupling constant of 0.5 ps-1. The ITS
method36,48 was used in the production run of each trajectory
to enhance the energy sampling on the potential energy
surface.

In the ITS method, a desired potential energy range
corresponds to a temperature range in MD simulation. The
temperature range could be separated into a series of smaller
ranges, each having its own energy distribution. Using a
quick and robust method, the ratio among the distributions
in all small temperature ranges could be adjusted. As a result,
the sampling in the entire energy (temperature) range
becomes even.36,48 Moreover, the energy range sampled in
the ITS simulation could be largely extended. In the present
study, 50 temperatures, evenly distributed in the range of
240-380 K, were used in the ITS method to ensure the
efficient sampling of the desired energy range. In each
trajectory, which was run at the constant simulation tem-
perature, a large energy range was covered, and many folding
and unfolding transitions were obtained.

Backbone Hydrogen-Bond Definition. A hydrogen bond
is considered as formed only if the distance between the
carbonyl oxygen and the amide hydrogen [CdO · · ·NH] is
less than 3.5 Å and the N-H-O angle is greater than 145°.

Heat capacity Cp was calculated by

where Eis the potential energy (the contribution of kinetic
energy is treated as a constant and therefore is not taken
into account in the calculation), kis the Boltzmann constant,
and T is the temperature.

Unfolding free energy ∆GUof a polypeptide was calculated
by

where P is the formation probability of folded hairpin
structures. The folded hairpins are defined as structures with
at least three of backbone hydrogen bonds formed. This
definition of folded hairpin structures is based on the
characters of the folded states in the free energy landscape
as a function of the radius of gyration of the hydrophobic
core (Rg

core) and the number of backbone hydrogen bond
formed (NHB) (Rg

core < 5 Å and NHB g 3, see Figure 4a in ref
34, Figure 5 in ref 45, and Figure 2 in ref 38). The unfolding
entropy and enthalpy were then calculated by ∆SU )

-(∂∆GU/∂T)P and ∆HU ) ∆GU + T∆SU, respectively. After
we obtained the figure of ∆GU as a function of temperature
(∆GU vs T), we assume that ∆SU (∆HU) is uniform in the
time range of two neighboring temperature points (T1 and
T2). Then ∆SU at that temperature range is equal to the slope
of ∆GU vs T, -(∆GU1 - ∆GU2)/(T1 - T2), and ∆HU is the
intersection. For each polypeptide, all calculated trajectories
in the simulation are involved in the calculation of Cp, ∆GU,
∆SU, and ∆HU. In the meanwhile, the corresponding ther-
modynamics parameters calculated from individual trajec-
tories are used to generate error bars.

Results and Discussion

Temperature Dependence of the Folded Structure
Stability. For each polypeptide under study, more than 10
independent trajectories were run, each starting from the fully
extended structure and lasting for several hundred nanosec-
onds. Consequently, the total simulation time is 1.0 µs for
peptide 1, 2.2 µs for GB1, and 2.0 µs for TRPZIP2 and
TRPZIP4. Plenty of folding and unfolding events were
observed for each polypeptide, e.g., totalling 57 folding
events obtained for peptide 1, 19 for GB1, 24 for TRPZIP2,
and 26 for TRPZIP4 (see the typical trajectories for peptide
1 and TRPZIP4 as examples in Figure 1). To investigate
the conformational transition of the polypeptides, we first
calculated their specific heat as a function of temperature in
a large temperature range (240-380 K). Using the peak
positions in their heat capacity diagrams as shown in Figure
2, we estimated the melting temperatures for the four
polypeptides. As seen in this figure, the error bars are small
for each polypeptide in the whole temperature range, which
means that each trajectory in the simulation is well converged.

Except for the GB1 peptide, the experimentally determined
melting temperatures for the four polypeptides are unarguable
(e.g., 304.1 ( 0.1 K for peptide 1,40 345.0 ( 0.1 K for
TRPZIP2,11 and 343.1 ( 0.1 K for TRPZIP4).11,43,44 The
laser temperature jump experiment by Eaton and co-workers
showed that the melting temperature of GB1 peptide is 297.3
K.10 Nevertheless in the more recent NMR and CD spec-
troscopy experiments by Anderson and co-workers49,50 and
by Scholtz and co-workers,51 the GB1 peptide demonstrated
less stability in the aqueous solution with the determined
melting temperature of 280-285 K or even lower to ∼273
K. The calculated heat capacity diagrams for the four
polypeptides except GB1 show a single peak at ∼330 K,

CP ) (〈E2〉 - 〈E〉2)/kT2 (1)

∆GU ) kTln
P

1 - P
(2)

Figure 2. Temperature dependence of the heat capacity for
four �-structured polypeptides.
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while the diagram of GB1 shows a minor peak at 260 K in
addition to the major peak at 320 K. The experimentally
determined melting temperature of GB1 is in the middle of
the two peaks. For the other three polypeptides, the calculated
melting temperatures are about 15 °C too low for TRPZIP2
and TRPZIP4 but are ∼20 °C too high for peptide 1
compared to the experimental data.

The usage of the current force field and the implicit solvent
model is considered to be the potential source for the
deviation between the calculated and experimental melting
temperatures. As mentioned earlier, compared to the other
force fields in AMBER, FF96 force field strongly favors the
hairpin conformations.25-28 On the other hand, by comparing
REMD simulation results on the folding of polypeptide Ala10
with the GB solvent models to those with explicit TIP3P
solvent model, Roe et al. observed that GB models over-
stabilize R-helical conformations.52 Moreover, the solvent-
accessible surface area (SASA) model, combining with the
GB model and accounting for the nonpolar part of the
salvation free energy, stabilizes the compact structures and
thus artificially increases the transition temperature of the
protein.53 These factors, together, deviate the calculated
melting temperatures from the experimentally determined
data. Even so, compared to most of the previously reported
melting temperatures in various MD simulations on the
folding of the above-mentioned hairpins,4,20,53,54 our results
are within reasonable range.

Next we calculated the unfolding free energy as a function
of temperature. To fit to the experiment condition, we
performed the calculations in the temperature range of
270-380 K. We should note here that the melting temper-
ature calculated using the free energy diagram depends on
the definition of the folded structure (see the definition in
Materials and Methods Section) and thus can deviate from
that obtained from the heat capacity calculations in Figure
2. Figure 3a shows the free energy change for the transition
of foldedf unfolded state as a function of temperature. As
seen from this figure, for peptide 1, TRPZIP2, and GB1, the
error bars are rather small in the temperature range under
study. For TRPZIP4, the error bars in the low temperature
are apparently larger than the other three polypeptides. It is
also seen from this figure that all four polypeptides are stable
(∆G > 0) in a rather large temperature range, including room
temperature. For all polypeptides except TRPZIP4, only one
transition temperature (at which ∆G ) 0) is observed in the

entire temperature range studied. The native �-structure of
TRPZIP4 becomes unstable at both low and high tempera-
tures, while the other three polypeptides (especially TR-
PZIP2, the unfolding free energy of which increases with
the decreasing temperature in the entire temperature range)
have the native state as the stable structure at all low
temperatures.

To further understand the structure stability as a function
of temperature, we also calculated the distribution of potential
energy for both folded and unfolded structures at various
temperatures. (As mentioned earlier, the folded structures
are defined as the ones with at least three backbone hydrogen
bonds formed and the left structures with less than three
hydrogen bonds formed refer to the unfolded structures.)
Since TRPZIP4 and TRPZIP2 represent two extreme be-
haviors among the four systems, the results are only shown
for these two polypeptides (see Figure 4a and b). It is shown
in Figure 4a that at low temperatures, the potential energy
of unfolded TRPZIP4 is lower than that of the folded
structure. This result shows that the breaking of the TRPZIP4
native structure at low temperatures is mainly due to an
enthalpy effect. [A cluster analysis of its non-native structures
shows that as temperature decreases, the probability of

Figure 3. (a) Temperature dependence of the unfolding free
energy, (b) enthalpy change, (c) entropy change, and (d) heat
capacity change for four polypeptides.

Figure 4. Comparison of unfolded (U) structures to folded
(F) structures for (a) TRPZIP4 and (b) TRPZIP2 at different
temperatures. Top: the potential energy distribution of the
unfolded (solid lines) and folded structures (dash lines); left
bottom: the potential energy distribution of R-helix (R, solid
lines) and �-hairpin (�, dash lines); and right bottom: the
temperature dependence of the unfolding free energy of
R-helix and �-hairpin.
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forming R-helix increases for TRPZIP4 (see the comparison
of the formation free energy of R-helix to that of �-hairpin
in Figure 4a). Due to the unstable turn of this polypeptide,
the R-helix indeed has lower energy than the �-hairpin
structure (Figure 4a).] In contrast, the unfolded structures
of TRPZIP4 at high temperatures and the unfolded structures
of TRPZIP2 at both high and low temperatures (Figure 4b)
are all of higher energies than their respective folded
structures. Therefore, the unfolding of TRPZIP4 at high
temperatures is primarily driven by the entropy increase. This
entropic effect is also responsible for the heated denaturation
of TRPZIP2. On the other hand, since the native �-structure
has low energy (partly due to the very stable turn) and the
unfolding enthalpy is positive, TRPZIP2 native structure
becomes more stable as temperature decreases. Accordingly,
the formation probability of R-helix decreases as temperature
decreases for TRPZIP2.

Enthalpic versus Entropic Contributions in
�-Structure Formation. The unfolding enthalpy and entropy
as functions of temperature are shown in Figure 3b and c,
respectively. It is seen from these figures that the four
polypeptides show dramatically different features. The most
noticeable difference is again between TRPZIP4 and TR-
PZIP2, while peptide 1 and GB1 show behaviors in between.
At low temperatures, the unfolding entropy is large and
negative for TRPZIP4 and is large but positive for TRPZIP2.
These values are small for GB1 (slightly negative) and
peptide 1 (slightly positive and showing a minimum at ∼300
K). At high temperatures, the unfolding entropy is positive
for all four polypeptides, with TRPZIP4 and peptide 1
having much larger values than the other two. These
results again show that the breaking of the native structure
of TRPZIP4 is enthalpically driven at low temperatures
and entropically driven at high temperatures. Since the
behavior of TRPZIP4 resembles a class of proteins which
exhibit both cold and heated denaturation of native
structures, we performed further analysis on its non-native
structures at both low and high temperatures. It is seen
from the radius gyration distribution function that the non-
native structures are indeed more compact at low tem-
peratures than those at higher temperatures (Figure 5). The
former are more and the latter are less compact than the
room temperature native structures.

Temperature Dependence of the Folding Mechanism.
As discussed earlier, one way of distinguishing different
folding mechanisms is to examine the formation order of
the different structural elements: the hydrophobic core, the
turn, and the hydrogen-bond assembly. We thus show in
Figure 6 the free energy landscapes of the folding of the
four polypeptides as a function of the collective coordinates,
e.g., the number of backbone hydrogen bonds formed (NHB),
the number of native hydrophobic contacts formed (NHC),
and the root-mean-square displacement of the turn segment
(rmsdturn) at different temperatures (273, 300, and 350 K). It
is seen from these figures that the free energy profiles change
with temperature in a similar way for all polypeptides.
Although the folding pathways (as shown by the minimum
free energy pathways, the dash lines in Figure 6a-d) of
peptide 1 and TRPZIP2 are different from those of GB1 and
TRPZIP4 at each temperature and the relative stability of
the folded structures decrease with increasing temperature,
the temperature dependence of the free energy profile shape
is weak. In particular, the minimum free energy pathways
only shift slightly for each polypeptide. These results show
that the folding mechanisms of these polypeptides are largely
determined by their sequences but are robust to the temper-
ature change.

For GB1 and TRPZIP4 which possess a disfavored turn
structure, the hydrophobic core formation is a barrierless
process and thus is very easy to occur in the entire
temperature range under study (see the free energy landscape
as a function of NHC and rmsdturn in Figure 6c and d). The
turn formation, however, constantly associates with a free
energy barrier and remains as the rate-limiting step (the
energy barrier for the hydrogen-bond formation is smaller
than that of the turn formation as shown in the free energy
landscape as the function of NHB and rmsdturn in Figure 6c
and d).

On the other hand, in the folding of peptide 1 and
TRPZIP2 which have the strongly favored turn structure, the
hydrogen-bond formation is rate-limiting (see the free energy
barrier in the free energy landscape as a function of NHB

and rmsdturn in Figure 6a and b). Moreover, the single local
minimum in the free energy landscape as a function of NHC

and rmsdturn for peptide 1 shows that the turn formation is a
barrierless process. The turn keeps stable once it is formed,
whereas the hydrophobic interaction is weak. The turn
structure of peptide 1 becomes unstable at the high temper-
ature, as revealed by the broader local minimum in the same
free energy landscape at the high temperature. The free
energy landscape as a function of NHC and rmsdturn for
TRPZIP2 at low and middle temperatures (273 and 300 K)
has two local minima, corresponding to one state at which
only a portion of hydrophobic interactions are formed and
the turn is not and the other state at which both the
hydrophobic core and the turn are formed. This shows that
the hydrophobic core formation is facilitated by the turn
formation in TRPZIP4. Therefore at any temperature, the
difference of the side-chain hydrophobicitiy and particularly
the turn stability changes the shape of the folding free energy
landscapes and leads to the different folding mechanism of
�-hairpins. Nevertheless the temperature only changes the

Figure 5. Radius gyration (Rg) distribution of unfolded (U,
solid lines) and folded (F, dash lines) structures of TRPZIP4
at different temperatures.
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stability of a �-hairpin structure but not its folding pathway.
These results might be thought to support the usage of high-
temperature unfolding in understanding the protein folding
mechanism at room temperature.

Temperature Dependence of the Formation and
Stability of Backbone Hydrogen Bonds. One interesting
question in understanding the �-structure formation is on the
sequence of backbone hydrogen-bond formation (e.g., “zip-
in” versus “zip-out”) and on its temperature dependence. To
answer this question, we first calculated the average forma-
tion probabilities of individual hydrogen bonds for the four
�-hairpins, and the results are shown in Figure 7(a-d). As
demonstrated in these figures, the hydrogen-bond stability
of the four polypeptides shows strong and different temper-
ature dependence (each consistent with the corresponding
free energy diagram shown in Figure 3a). In accordance with
the high stability of their folded structures at low tempera-
tures, the majority of the hydrogen bonds of GB1, peptide
1, and TRPZIP2 possess higher stabilities at lower temper-
atures, while the hydrogen bonds of TRPZIP4 are the most
stable in the intermediate temperature region. There are also
noticeable common features among the four polypeptides in
the temperature dependence of their hydrogen-bond stability.
For instance, it is seen from Figure 7 that the stability of

most inner hydrogen bonds (HB6 for GB1, TRPZIP2, and
TRPZIP4 and HBs 5 and 6 for peptide 1) increases with
temperature in the high-temperature range (>320 K). The
stability of the other hydrogen bonds, in particular the
terminal ones, decreases with temperature in this temperature
range. The reason behind the difference between inner and
outer hydrogen bonds will be discussed later.

Figure 6. Free energy landscapes as a function of several collective coordinates including the number of backbone hydrogen
bonds formed (NHB), the number of native hydrophobic contacts formed (NHC), and the root-mean-square displacement of the
turn (rmsdturn) for (a) peptide 1, (b) TRPZIP2, (c) GB1, and (d) TRPZIP4 at different temperatures (in all figures (a-d), top panel:
273, middle panel: 300, and bottom panel: 350 K).

Figure 7. Average formation probability of individual back-
bone hydrogen bonds for (a) peptide 1, (b) TRPZIP2, (c) GB1,
and (d) TRPZIP4 at different temperatures.
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In TRPZIP2, the stability of its hydrogen bonds except
for the most inner one (HB6, whose stability increases with
increasing temperature) markedly decreases with temperature.
TRPZIP4, on the other hand, exhibits a maximum stability
at the intermediate temperature range. Both its unfolding free
energy (Figure 3a) and the formation probability of backbone
hydrogen bonds, except for HB6, are bell-shaped. The
temperatures at which individual hydrogen bonds show the
highest stability increase systematically from the terminal
(HB1 and HB2) to the inner positions. The stability of
backbone hydrogen bonds of peptide1 and GB1, the two
polypeptides with weak hydrophobic core clusters, depends
on temperature roughly in the same fashion. The main
difference between peptide 1 and GB1 is in HB6, which is
much more stable in peptide 1 than in GB1 as a result of
the more stable turn in the former. Moreover, it appears that
HB6 has an effect on the stability of the neighboring HB5,
which also shows slightly different temperature dependence
in peptide 1 and GB1. Overall, from the above analysis, one
concludes that the increase of temperature in the high
temperature region destabilizes terminal hydrogen bonds that
are further away from the turn and either stabilizes or has
little effect on the hydrogen bonds close to the turn. The
decrease of temperature in the low temperature region
appears to increase the relative stability of the terminal
hydrogen bonds and either destabilizes or has little effect
on the ones near the turn.

In addition to the temperature dependence of the average
stability of hydrogen bonds shown in Figure 7, we also
investigated the formation probability of each individual
hydrogen bond in the assembling of backbone hydrogen

bonds during the formation of the native structure for each
polypeptide. These data are shown in Figure 8 as a function
of the total number of hydrogen bonds formed. The figure
thus illuminates the stability and the formation order of
backbone hydrogen bonds along the lowest free energy
pathway in each polypeptide. The earlier the hydrogen bond
appears in the high-formation probability region, the easier
is it formed, namely the more preferential is its formation
along the lowest free energy pathway in the assembling of
backbone hydrogen bonds. As an example in Figure 8c,
although the hydrogen-bond formation order of GB1 along
the lowest free energy pathway is roughly 1 f 2 f 3, 4, 5
f 6 at low temperatures (the formation of HB6 is difficult
due to the unstable turn of GB1; HB1 forms easily in the
folding process, whereas becomes broken again during the
assembling of the hydrogen bonds in the middle position),
it roughly converts to the “zip-out” mechanism at high
temperatures (5, 4f 3f 2f 1f 6). A similar temperature
dependence of hydrogen-bond formation order along the
lowest free energy pathway is also observed for the other
three polypeptides. As shown in Figure 8a, at low temper-
atures, the appearance order of hydrogen bonds (from high
to low probabilities) of peptide 1 is roughly 6 f 1, 2 f 4,
5 f 3 (HB6 forms easily as a result of the stable turn of
peptide 1 but breaks down during the rest of the structure
formation process). As temperature increases, the formation
of terminal hydrogen bonds becomes more difficult, and at
temperatures higher than 300 K, the formation order of
hydrogen bonds along the lowest free energy pathway is 6
f 5 f 4 f 3 f 2 f 1, corresponding to a “zip-out”
mechanism.

Figure 8. Formation probability of individual backbone hydrogen bonds as a function of the total number of formed hydrogen
bonds for (a) peptide 1, (b) TRPZIP2, (c) GB1, and (d) TRPZIP4 at different temperatures.
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TRPZIP2 and TRPZIP4 both possess a strong hydrophobic
core that is close to the center of strands. As a result of the
strong hydrophobic packing of these residues, the formation
of hydrogen bonds in the middle of strands (HBs 2-4) is
strongly favored compared to those in GB1 and peptide 1.
Consistent with the facilitated hydrogen-bond formation in
the middle, at low temperatures the hydrogen-bond formation
along the lowest free energy pathway initiates from the
middle of strands for both TRPZIP2 and TRPZIP4 (see the
high formation probability of H3 and H4 in Figure 8b and
d). For TRPZIP4, as temperature increases, the stability of
the inner hydrogen bonds increases over the terminal ones
as discussed earlier, and as a result, the formation of
hydrogen bonds along the lowest free energy pathway
follows a “zip-out” mechanism at high temperatures (5f 4
f 3 f 2 f 1, HB6 is unstable due to the unstable turn
structure of TRPZIP4). For TRPZIP2, at low temperatures,
along the lowest free energy pathway, the formation of HB3
is easier than HB5, and at high temperatures a reverse order
is seen, although in all temperatures HB4 appears to be the
most easily formed. At all temperatures, the inner hydrogen
bond HB6 forms easily as a result of the stable turn of
TRPZIP2. However, only at high temperatures, it remains
relatively stable during the assembling of the rest hydrogen
bonds, again supporting a transition toward the “zip-out”
mechanism.

Temperature Dependence of the Formation and
Stability of Hydrogen Bonds in the Turn Region. Different
from the type I′ turn in peptide 1 and TRPZIP2, the type I
turn in GB1 and TRPZIP4 possesses a hydrogen-bond
network covering the backbone and side chains of the turn
residues (Asp6-Thr11),24 as organized in Table 1 (HBt1-6)
and shown in Figure 9. In addition, a salt bridge is formed
between Asp7 and Lys10 side chains. As demonstrated by
several novel experiments,44,55 the hydrogen bonds in the
turn region, particularly those formed between Asp6 and
other residues, are crucial to the stability of the turn structure
and the folding rate of GB1 and TRPZIP4. For instance, the
T-jump IR experiment by Du et al. showed that the
replacement of Asp6 by alanine decreases the folding rate
of TRPZIP4 by ∼9 times, whereas the mutation of Asp7 by
alanine only decreases the folding rate of the same polypep-
tide slightly.44 Moreover, the NMR stability experiment on
GB1 peptide demonstrated that the mutating of either Asp6,
Lys10, or Thr9 with alanine destabilizes the turn structure,
and the destabilization degree follows the order of Asp6>
Lys10> Thr9.55

We calculated the average formation probabilities of
individual hydrogen bonds in the turn region of GB1 and

TRPZIP4, respectively, and the results are shown in Figure
9. As shown in this figure, the only two hydrogen bonds
formed between the backbones in the turn region, HBt4
(D7O-K10H) and HBt6 (D7O-K10H), show much higher
stabilities than other hydrogen bonds in both GB1 and
TRPZIP4. Interestingly, these two hydrogen bonds have the
totally opposite temperature dependence on their stability.
On the contrary, Hbt2 formed between the side chains of
Thr9 and Thr11 always has the extremely low stability in
the whole temperature range under study. The left three
hydrogen bonds (HBt1, HBt3, and HBt5), which are formed
between the side chain of Asp6 and either backbone or side
chain of other residues, have the middle stability, especially
in TRPZIP4. Since HBt2 contributes least to the hydrogen-
bond network in the turn region, the T9A mutation should
lead to a minor change in the turn structure stability. On the
other hand, the D7A or K10A mutation results in the
cancellation of the salt bridge. Nevertheless, this side-chain
configuration change will not largely affect the stability of
the backbone-backbone hydrogen bonds. The D6A muta-
tion, however, removes the three hydrogen bonds of HBt1,
HBt3, and HBt5 which have the middle stability in the
hydrogen-bond network in the turn region. As a result, only
the D6A mutation will largely decrease the turn structure
stability, which is consistent with the experimental observa-
tions mentioned above.44,55

Conclusions

In this article, we performed detailed thermodynamics study
on the temperature dependence in the folding of several
polypeptides that form stable �-hairpin structures. The current
study is expected to provide a qualitative understanding of
the folding mechanism of �-hairpin structures and a fully
atomic description of the structure formation process (par-

Table 1. Native Backbone Hydrogen Bonds along the
Strands and Hydrogen Bonds within the Turn Region in
GB1 and TRPZIP4 Polypeptides

backbone HBs HBs in the turn region

HB1 T15O-E2H HBt1 D6Oδ-T9Hγ1
HB2 E2O-T15H HBt2 T9Oγ1-T11Hγ1
HB3 T13O-T4H HBt3 D6Oδ-T9H
HB4 T4O-T13H HBt4 D6O-K10H
HB5 T11O-D6H HBt5 D6Oδ-A8H
HB6 D6O-T11H HBt6 D7O-K10H

Figure 9. Average formation probability of individual hydro-
gen bonds in the turn region of (a) GB1 and (b) TRPZIP4.
The top panel is the schematic representation of the hydrogen-
bond network in GB1 peptide.
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ticularly the backbone hydrogen-bond formation) for various
amino acid sequences at different temperatures. Simulations
were performed using an implicit solvent model, which was
proven to yield free energy profiles in reasonable agreement
with those obtained using explicit solvent models.34 Cautions,
however, have to be exercised in quantitative interpretation
of the simulation data. For example, it will not be surprising
that water contributes significantly (if not dominantly) to the
folding energy of protein. Although the effects of water to
the free energy were considered in a continuum model, there
is no guarantee that the effects have been taken into account
faithfully. Therefore, the current study should be understood
in a more qualitative way. It provides a useful model system
for the understanding of protein sequence and temperature
dependence of protein folding mechanism. The results of the
very recent isotope-edited two-dimensional infrared spec-
troscopy experiment on the temperature dependence of the
backbone hydrogen-bond stability of TRPZIP2,46 which are
consistent with our predictions, demonstrate the validity of
the present methodology in exploring the folding mechanism
of �-hairpins.

Four polypeptides (peptide 1, TRPZIP2, GB1, and TR-
PZIP4), which differ at their side-chain hydrophobicity and
turn stability, were used as the model systems in the present
study. Based on the analysis of a variety of thermodynamics
data, we showed that the folding of simple �-hairpin
structures is highly sequence and temperature dependent.
First, the formation order of the three important structural
elements along the minimum free energy pathway in the free
energy landscapes appears to be only sequence dependent
and to be largely unaffected by the temperature change
between 270 to 380 K (see Figure 6). The presence of the
strong �-turn-promoting sequence in peptide 1 and TRPZIP2
leads to the folding of �-hairpins following the modified
“hydrogen-bond centric” mechanism.19 On the contrary, the
presence of disfavored turn structure in GB1 and TRPZIP4
makes the hairpin folding more consistent with the “hydro-
phobic core centric” mechanism. Second, both the hydro-
phobic core cluster and the turn affect the nearby hydrogen
bonds. The favored turn structure assists the formation of
the inner hydrogen bond (HB6), whereas the strong hydro-
phobic core cluster strengthens the stability of hydrogen
bonds (HBs 3 and 4) in the middle of strands. These effects
lead to the different stability and formation order of
individual hydrogen bonds at a given temperature. Finally,
the pathway for the formation of backbone hydrogen bonds
shows a strong dependence on temperature. At low temper-
atures, the formation of hydrogen bonds is likely initiated
from the middle of the strands (at very low temperatures
the formation of the terminal hydrogen bonds also become
largely favored, but the terminal hydrogen bonds tend to be
broken during the assembling of the rest hydrogen bonds,
see the examples of GB1 and peptide 1 in Figure 8a and c,
respectively). At high temperatures, however, there is a strong
tendency for the hydrogen-bond assembling to be initiated
from the turn position and to propagate through a “zip-out”
mechanism. These results are easily understood in terms of
entropy and enthalpy contributions in hydrogen-bond
formation.

Without considering the side-chain interactions, it is easy
to see that the breaking of terminal hydrogen bonds increases
the configuration entropy to a larger extent than the breaking
of inner hydrogen bonds does, simply because of their larger
separation along the amino acid chain. As a result, one
expects that under these hypothetical conditions, the forma-
tion of the terminal hydrogen bonds is less favored compared
to the inner ones at high temperatures. At high temperatures,
since the denatured states also likely have interrupted side-
chain interactions, it is thus conceivable that the entropy
effects mentioned above dominate the formation probability
of the individual hydrogen bonds, and as a result, the stability
of the hydrogen bonds increases from the turn to the terminal
position, as observed in Figure 7.

At lower temperatures, the enthalpy effects also play
important roles, and as a result, the hydrogen-bond stability
is strongly affected by their local interactions, the simple
order observed at high temperatures therefore disappears. In
contrast, the hydrophobic cluster near the hydrogen bonds
tends to shield them from solvent attack and effectively
creates a low-dielectric environment. As a result, these
hydrogen bonds can be expected to be more stable. This
stabilization of the hydrogen bonds through this enthalpic
effect is most easily seen from the hydrogen-bond stability
of TRPZIP2 and TRPZIP4 at low temperatures. It is of great
interest for the numerous predictions made through this study,
for example, those on the temperature dependence of
hydrogen-bond stability and those on the compactness of
non-native states (see Figure 5), to be tested by experiments.
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Abstract: We discuss the rigorous characterization of the electron density Laplacian of crystals
in terms of its topological properties: critical points (CPs), zero flux surfaces, and accumulation
and depletion basins. Comparison with the atomic shell structure is exploited to characterize
the numerous core critical points so that the important effort is applied to the more significant
valence structure. Efficient algorithms are adapted or newly developed for the main tasks of
topological study: finding the critical points, determining the 1D and 2D bundles of (3, - 1) and
(3, + 1) CPs, and integrating well-defined properties within the accumulation and depletion basins.
As an application of the tools and concepts developed we perform a quantitative analysis of
chemical bonding on group IV semiconductors, mainly devoted to the properties of the diamond
phase but also including the main effects of allotropy influences on these elements. The
topological analysis of the Laplacian provides a complementary and very different image than
the topology of the electron density. Whereas the Laplacian graphs show a qualitative agreement
with Lewis classical model, the basin population analysis excludes direct quantitative relationships
with Lewis pair and octet rules. In addition to the expected core and valence basins, all group
IV elements show very important interstitial basins, that accumulate a large number of electrons
and dominate the compressibility behavior of the crystals.

1. Introduction

The Quantum Theory of Atoms in Molecules (QTAIM) has
been in use for some three decades now to determine
chemical bonding properties as true observables of the
electron wave function.1-8 QTAIM studies are mainly based
on the topological analysis of the electron density, F(r),
particularly the characterization of its critical points (F-CP),
and the integration of every kind of quantum observable
within the attraction basin of atomic nuclei. Both, theoretical
and experimental electron densities have been the subject
of such scrutiny and, in fact, QTAIM is the mainstream
technique for the experimental analysis of chemical bonding.3,9

The name Quantum Chemical Topology (QCT) has been
proposed by Popelier10-12 to include the growing collection

of methods inspired in the seminal work of Bader.1 Studies
based on the topological analysis of F, ∇2F, the electron
localizing function (ELF),13 the source function,14 the
momentum density,15 the electron pair density,16 and many
other similar properties would be included under the umbrella
of QCT. Beyond sharing many common techniques and
language, the development of QCT is becoming a revolu-
tionary perspective in the old quest for the chemistry holey
grail: obtaining every bit of information regarding chemical
bonding that exists in the experimentally or computationally
available part of the wave function, with no recourse to
unfounded simplifications. In other words, providing a strict
physical foundation to the chemical bonding.

The value of the Laplacian of the electron density, ∇2F(r),
on the F-CPs has been used to distinguish between shared-
and closed-shell bonding cases.17 The Laplacian has also
been instrumental in characterizing hydrogen bonding,18-21

predict sites of nucleophilic and electrophilic attack, as well
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as the reactivity propension,22 used to follow chemical
reactions23,24 and to distinguish between Lewis nucleophilic
and acidic zones of a molecule,25,26 to name just some of
its most prominent roles.

The electron density Laplacian has also received a lot of
recent attention from the community of developers of
exchange and correlation functionals. Quantum Monte Carlo
investigations on the strongly inhomogeneous electron
gas,27,28 later extended to small molecules29 and crystals,30

have shown that “the nonlocal contributions to [the exchange-
correlation energy density] contain an energetically signifi-
cant component, the magnitude, shape, and sign of which
are controlled by the Laplacian of the electron density”.27

Such an important role sharply contrast with the fact that
only a very small number of articles have been devoted to
the full topological characterization of the electron density
Laplacian,6,11,31-34 and none of them has examined con-
densed matter systems. The full topological characterization
of a three-dimensional (3D) scalar field like ∇2F(r) requires,
in our opinion, being able to complete, at least, three different
tasks: (1) localizing efficiently the critical points (L-CPs in
this case); (2) tracing the 1D (field lines) and 2D (interbasin
surfaces) regions that start or end on the first- and second-
order saddle points; and (3) integrating local properties within
the 3D basins of the Laplacian maxima and minima. Whereas
the first capability is included in the AIMPAC package35

since the eighties and from this on many other molecular
topological codes, Popelier’s MORPHY36 (since the 2001
version) is the only code that currently offers the three
capabilities.

This article is devoted to the complete characterization of
the electron density Laplacian in solids. In the next section,
we examine the meanings and usages that are associated to
the Laplacian. Section 3 considers briefly the consequences
of the cusps that the nonrelativistic electron density shows
at the nuclear positions under the Born-Oppenheimer
approximation. Section 4 reviews the atomic shell structure
that markedly influences the Laplacian topology in molecules
and solids. This analysis of the shell structure will prove
determinant for the difficult task of finding and classifying
the abundance of critical points that can be found. Section 5
introduces the algorithms that we have adapted or created
to complete the full topological analysis of the Laplacian.
The analysis and discussion of our results in a representative
set of crystals is the subject of section 6. We have selected
the group IV elements for the first application of the new
techniques: the examination of the five, C-Pb, elements on
the same diamond phase will let us determine the influence
of the number of electron shells, whereas the characteristic
allotropy of these elements provides a window to the effect
of crystal geometry on the topological properties. The article
ends with a discussion of the main outcomes of our analysis
and the prospect of the possible role of the presented
techniques on the Quantum Chemical Topology studies.

2. Meaning of the Laplacian of the Electron
Density

The most immediate meaning of the Laplacian comes from
the geometrical interpretation: ∇2F(r) provides the local

curvature of the electron density at r. Hence, if ∇2F(r) < 0,
the electron density at r is larger, on average, than in the
differential region surrounding this point. In other words,
the electron density is locally enhanced or accumulated at r.
Similarly, the electron density is locally depleted at those
points where ∇2F(r) > 0. This role is consequence of the
Laplacian being the trace of the Hessian or curvature matrix:
H(r) ) ∇X∇F(r). Accordingly, ∇2F(r) represents the ac-
cumulated curvature of the three-dimensional neighborhood
of r.

This geometrical role of the Laplacian is stressed in the
following equation, included by James C. Maxwell37 in his
Treatise on Electricity and Magnetism (1873):

where Fav(ra) represents the average value of the electron
density for all the points within a sphere of radius τ centered
on ra, and O (τ4) is a small term of the order of τ4. This
equation led Maxwell to propose calling L(r) ) -∇2F(r)
the “concentration of F at the point r, because it indicates
the excess of the Value of F at that point oVer its mean Value
in the neighborhood of the point”.37

The use of L(r) instead of ∇2F(r) has also been customary
in the QTAIM literature at least since 1984.38 Looking for
a more intuitive comparison with the behavior of the density,
maxima in L(r) represent maximal concentration of density
in a similar way to maxima in F(r) that represent the maximal
accumulation of electronic charge which are typical of nuclei.
We will adhere to this tradition and our topological charac-
terization will be referred from now on to L(r) rather than
to ∇2F(r).

The importance of the Laplacian for the QTAIM theory
is further evidenced by the fundamental relationships in
which it appears. Of tantamount importance is the local Virial
relationship:17,39,40

where G (r) is the kinetic energy density and V (r) is the
electronic potential energy density. G (r) is everywhere
positive, and V (r) is everywhere negative, so the sign of
∇2F(r) indicates which of the two contributions to the local
virial theorem dominates at every point. Acidic regions,
characterized by ∇2F(r) > 0 show a kinetic energy domi-
nance, whereas regions of basic character, ∇2F(r) < 0, show
the dominance of the electronic potential energy.

Requiring that the virial relationship holds in an arbitrary
region Ω leads to the QTAIM characterization of atomic
basins by bounding zero flux surfaces

where n(r) is the normal vector to the surface at r. When
and only when Ω is defined in this way then

F(ra) - Fav(ra) ) - τ2

10
∇2F(ra) + O(τ4) (1)

p2

4m
∇2F(r) ) V (r) + 2G (r) (2)

∇F(r) · n(r) ) 0 (3)

∫Ω
∇2F(r)dr ) IS(Ω) ∇F(r)·n(r)dr ) 0 (4)
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In a similar way, ∇2F can be shown to be the connection
between different, but equally grounded, forms of the kinetic
energy density. For instance1,41

where

and Γ(1)(r, r′) is the nondiagonal one-electron density matrix.
Only when Ω satisfies the zero flux condition K (Ω) ) G
(Ω) and, in general, all the different forms of defining locally
the kinetic energy density yield equivalent results.

The Ω regions defined in terms of the zero-flux surface
condition constitute the electron density basins and represent
the fundamental partition of the molecular and crystalline
space according to the QTAIM theory. Atomic attraction
basins, containing a single nuclear F-CP, and minima
repulsion basins, containing a single cage F-CP, are two
alternative partitions that exhaustively divide the crystal into
nonoverlapping regions. Both are made, in fact, by joining
appropriately primary bundles, mathematically defined as the
space region made of the gradient lines joining together a
particular nucleus with a particular cage F-CP.42

This partitioning of space is not exclusive of the electron
density. Any differentiable C2 scalar field provides a partition
with similar topological properties, including L(r). We define,
for instance, the accumulation basins and the depletion basins
as the regions bounded by zero flux surfaces of ∇L(r) and
associated to maxima and minima of L(r), respectively. The
electron density, however, stands alone as the only partition
that guarantees the correct behavior of all quantum mechan-
ical operators on the local level. As a consequence, we will
be able to integrate, within the L(r) basins, local properties,
like the volume and charge, but not such nonlocal properties
as the kinetic energy.

3. Laplacian and Nuclear Cusps in the
Electron Density

It is well-known that nonrelativistic Born-Oppenheimer
electron densities exhibit a singularity or cusp at the fixed
nuclear positions.43 This is a consequence of the infinite
asymptote of the Coulomb potential because of a fixed-point-
like nucleus. This singularity, that would preclude the
existence of derivatives, including ∇2F(r), at the nuclear
positions is usually discarded by assuming the mapping of
a smooth function identical in value and properties to F(r)
except that the cusps are eliminated and substituted by some
rounded shape.1

It should be noticed, however, that the cusps are removed
if nuclei are modeled as small but finite-size particles, as it
is routinely done in atomic44 and solid-state relativistic
calculations.45,46 Cusps would also disappear if the electron

density is the result of some statistical ensemble where the
nuclear motion is taken into account.

4. Topological Structure of L(r) ) -∇2G(r)
and the Atomic-like Shell Structure

L(r) induces a complete partition of the space into distinct
and complementary regions by means of the gradient vector
field, ∇L(r), described in terms of the critical points, rc:

which can be classified by the rank and signature of the
Hessian matrix:

Table 1 gives a summary of the type and properties of
the regular (i.e., 3D) and degenerated (2D or 1D) critical
points of L(r), and establishes the notation for the rest of
the paper. We have decided to keep the same denominations
already popular when describing the topology of F(r). If
confusion is possible, we will refer to F-CP or L-CP to
distinguish between the critical points of both scalar fields.

Both, the electron density and the L(r) scalar fields inherit
their basic structure directly from the atoms. The electron
density, peaked at the nuclear position, is formed by a
collection of exponential arcs (one for each electronic shell,
see Figure 1, left) connected by regions of larger curvature.

The shell structure is far more clearly revealed by the L(r)
function (see Figure 1, right). Starting from the nucleus, L(r)
shows a succession of maxima, zeros, minima, and zeros
that we have labeled as K+, KK, K- (for the 1s electrons),
KL, L+, LL, L- (the 2sp shell), LM, M+, MM, M- (the 3spd
shell), and so on. These features in the radial L(r) function
correspond to spheres of degenerate critical points in the 3D
L(r) field for the isolated atom. The spherical symmetry is
broken by the influence of the neighbor atoms in a molecule
or solid, but there is a neat difference between the effects
shown by the core and valence shells. Whereas the internal
shells keep unaltered the distance to the nucleus of their
topological spots, the outermost shell loses to a large part
its atomic origin and it is determined by the competition
between the neighbor atoms, like it happens to the electron
density itself.

K (r) ) G (r) - p
2

4m
∇2F(r) (5)

K(r) ) - p
2

4m
{∇2 + ∇′2}Γ(1)(r, r′)|r′fr′ (6)

G(r) ) p
2

2m
{∇2 · ∇′}Γ(1)(r, r′)|r′fr′ (7)

Table 1. Rank and Signature (r, σ) of the Hessian Matrix
Can Be Used to Classify the Different Types of Critical
Pointsa

(r, σ) type name abbrev. AD RD

(3, -3) maximum nucleus NCP 3D 0D
(3, -1) saddle-1 bond BCP 2D 1D
(3, +1) saddle-2 ring RCP 1D 2D
(3, +3) minimum cage CCP 0D 3D
(2, -2) 2D-maximum 2D 0D
(2, +0) 2D-saddle 1D 1D
(2, +2) 2D-minimum 0D 2D
(1, -1) 1D-maximum 1D 0D
(1, +1) 1D-minimum 0D 1D

a The common name and the usual abbreviation is indicated as
the third and fourth column, respectively. AD and RD are the
dimensions of the attraction and repulsion basins, respectively,
created by the critical point.

∇L(rc) ) 0 (8)

H(rc) ) ∇ X ∇L(rc) (9)
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Figure 1 also shows that the core region experiences a
negligible relative modification because of the environment,
as well as the relativistic effects, both on F(r) and L(r). It is
only the valence region that suffers the significant changes.

The association of the Laplacian of the electron density
and the atomic shell structure was first formulated by Bader
et al.17,50 ref. 50 in particular, started the association of an
electronic shell with a pair of spherical shells of alternating
charge concentration and charge depletion, later accepted by
most researchers. These initial studies, performed on light
elements of the main groups, were later extended to heavier
atoms by Sagar et al.,51 Shi and Boyd,52 and Kohout et al.53

Those works have shown that, using Bader’s definition, the
Laplacian of F fails sometimes to resolve the valence from
the inner shells, a problem that starts to occur in some
elements of the fourth row of the periodic table and becomes
more common as we progress to heavier elements. This was
a common argument for the introduction of the Electron
Localization Function (ELF)13 that shows similar properties
to L(r) but maintains the core-valence difference up to the
sixth row, at least. Following Eickerling and Reiher,54 authors
of the most extensive analysis to date of the Laplacian of
relativistic multiconfigurational atomic calculations, we
consider that all topological features of L(r) should be
considered: maxima, minima, and zeros. For elements Z >
18, the assumed valence electronic shell is not observable
as a local maximum in the positive region of L(r), but the
maximum remains even though in the negative region.

In any case, our main interest regarding the shell structure
lies in the possibility of knowing in advance how a spherical
shell will contribute to the topology of L(r) in a molecule or
crystal. This will help us in classifying and naming the large
number of L-CPs that typically occur. The number and type
of L-CPs in a unit cell is restricted by the Morse relationship,

where n, b, r, and c are the number of NCP, BCP, RCP, and
CCP, respectively, per unit cell. The degeneracy of an atomic

spherical shell is broken by the potential of the neighbor
atoms. In the case of core shells, the resulting L-CPs move
negligibly in the radial direction, and the radial curvature of
L(r) also changes negligibly. Moreover, the L-CPs produced
by the symmetry breaking of a core shell are topologically
equivalent to a polyhedron and the Euler relationship must
be fulfilled:

When the core shell corresponds to a maximum of L(r),
the radial curvature is negative and the breaking of atomic
symmetry can only produce NCP, BCP, and RCP, but not
(3, +3) points. In this case, NCPs are the vertices, the 1D
repulsion basins of BCPs form the edges, and the 2D
repulsion basins of RCP’s are the faces of the polyhedron.
Accordingly, the radial maximum in L(r) produces

a contribution of +2 to the global Morse sum. Contrarily, a
core minimum of L(r), with a positive radial curvature,
decomposes into CCPs (vertices), RCPs (edges), and BCPs
(faces) but no NCPs. Their contribution to the Morse sum
is, therefore

Table 2 shows the mean radii of the mostly spherical shells
for C-Pb in their cubic diamond phase. The K+ position is
essentially coincident with the nucleus and it is considered
to remain a single point, although the behavior of the electron
density at the nucleus depends, on relativistic calculations,
of the type of model used to describe the nuclear charge.
From our point of view it is enough to consider that the
unsplit K+ point contributes +1 to the Morse sum. Each pair
of successive minimum plus maximum radial shells com-
pensate to produce a null net Morse contribution. A last,
uncompensated radial minimum shell would change the
global core contribution from +1 to -1. This is what happens

Figure 1. Radial structure of the electron density (left) and L(r) (right) of Ge. The results from a nonrelativistic Hartree-Fock
atomic calculation,47 a relativistic Dirac-Fock atomic calculation,44,48,49 and a relativistic FPLAPW calculation of the diamond
phase of germanium are shown in both plots. The latter treats core states fully relativistically, while the scalar relativistic
approximation is used for valence states.49 The points K+, L+, are the maxima of L(r) and K-, L-, are the minima. Notice the
log scale of the left plot. Similarly, an arctangent scale is used on the right plot, transforming the (-∞, +∞) range of L(r) into
[-1, 1], with a minimal distortion of the region close to zero, the most significative one from a chemical bonding perspective.

n - b + r - c ) 0 (10)

vertices - edges + faces ) 2 (11)

n+ - b+ + r+ ) +2 (12)

-b- + r- - c- ) -2 (13)
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in C, Si, Ge, and Pb, but not in Sn, according to Table 2.
Anyway, the consideration of what constitutes a core and
what a valence shell depends upon the criterion used to
accept that two Laplacian critical points have the same
distance relative to the nucleus.

Our description in this section is not specific of the L(r)
function, but it can be applied to any scalar field showing
an atomic shell structure. The ELF function comes im-
mediately to mind, but many other similar fields can also be
included.

5. Implementing the Topological Analysis of
the Electron Density Laplacian in Crystals

The rich literature exploring the topology and properties of
the Laplacian in molecules or for light elements has been
discussed in previous sections. However, to the best of our
knowledge, this is the first article devoted to the full topology
of L(r) in crystals and addressing solids with arbitrarily heavy
elements. The reason behind this apparent neglect rests in
the extreme behavior of the L(r) scalar function. In this
section, we describe the important modifications and new
techniques that must be introduced in the usual QCT
algorithms when analyzing L(r). The principles and methods
that will be described can be readily generalized to other
scalar fields showing atomic shell structure, such as the
ELF,13,55 and the noninteracting electron pressure,56 for
instance.

As described previously, L(r) displays a shell structure
around the atoms: there exist regions surrounding the nuclei
that present large value fluctuations, specially near the
nucleus. If the atom were isolated, L(r) would have a strict
spherical symmetry. After the formation of the crystal, L(r)
is distorted, acquiring the symmetry of the local point group.
However, the shell structure is maintained and the distortion
is small, specially in the core region. The heavier elements
show the sharpest oscillations. As an example, the value of
L(r) in the Pb atom varies more up to 14 orders of magnitude

between the K+ (L ≈ 108) and L- (L ≈ -106) radial extrema.
This example shows clearly the necessity for specialized
algorithms to deal with shell-structured scalar fields.

The topological characterization of a scalar field f(r), rests
on three main tasks: the integration of the trajectories of ∇f,
the localization of all the critical points of f, and the
integration of properties on the attractor basins. The com-
putational bottleneck is the latter by far.

Starting with the seminal work by Biegler-König,57,58 a
number of methods have been developed to deal with the
problem of locating the interattractor surface (IAS) and
integrating the property densities.34,59-62 Most of them,
however, are density-specific and not suitable for generic
scalar fields, where the basins have different shapes11 and
geometrical properties. In the case of light molecules,
Popelier has successfully applied a collection of strategies,
including a specialized octree algorithm,34 to the calculation
of the basin properties of L(r).

In this work, we have preferred to adopt the old and simple
but robust bisection technique. Several reasons have lead us
to use it: (a) the algorithm is general enough to deal with
any basin shape, provided there are no multiple crossings of
the ray and the IAS, and even that can be taken into account;
(b) it is reasonably efficient if the gradient paths are traced
sensibly (see below); and (c) it allows arbitrary precision of
integration by increasing the number of rays, with an error
given by the cubature employed and the precision of the IAS.
Bisection depends on the efficiency of the gradient path
tracing, and its performance is independent of the scalar field,
so the three above-mentioned tasks of the QCT study reduce
to two core routines: tracing gradient paths and finding the
whole set of critical points.

5.1. Source of the L(r) Function. First, let us examine
the technical details of the analysis of L(r) in solids. The
L(r) field is a quantum-mechanical observable, and as such,
its features and the insights gained from its analysis are
independent of the method used in its determination. In
practice, however, both theory and experiments have short-
comings and the L(r) field is obtained only as an approxima-
tion, and is subject to the limitations of the determination
method.

Our approach to L(r) in this article is based on the full-
potential (linearized) augmented plane-waves method
(FPLAPW)63,64 as implemented in wien2k.45,46 In the
FPLAPW method, the real space is partitioned into regions,
roughly corresponding to the core and valence zones of the
solid. These regions are: the muffin tins, noncolliding spheres
centered around each atom, and the interstitial space, that
fills the rest of the crystal. The basis functions (APW or
LAPW) and the density are split, behaving differently in each
region. In particular, the density is expressed as

In the muffin tin of the R nucleus (SR), with radius Rmt, the
density is expressed as a spherical harmonics (YL

M) expansion
referred to its corresponding center (the position of the

Table 2. Mean Radius of the Spherical Shell Diamond
Structurea

C Si Ge Sn Pb

K+ 0 0 0 0 0 K+
KK 0.16844 0.07018 0.02915 0.01729 0.00804 KK
K- 0.23042 0.09600 0.03992 0.02381 0.01134 K-
KL 0.84696 0.27785 0.10452 0.06248 0.03426 KL
L+ 0.98123 0.32665 0.12327 0.07362 0.04015 L+
LL 0.47154 0.17100 0.10058 0.05363 LL
L- 0.59910 0.21708 0.12735 0.06825 L-
LM 1.59407 0.40355 0.21606 0.11223 LM
M+ 1.83266 0.46067 0.24758 0.12846 M+
MM 0.61172 0.31794 0.16148 MM
M- 0.74538 0.38810 0.19615 M-
MN 2.03817 0.65597 0.29462 MN
N+ 0.73175 0.33214 N+
NN 0.92299 0.41801 NN
N- 1.09627 0.49510 N-
NO NO
O+ 0.96772 O+
OO OO
O- 1.11951 O-
RNN/2 1.45931 2.22190 2.31464 2.65579 2.88807

a The horizontal lines mark the end of the core shell structure.

F(r) ) { ∑
LM

FLM(r)YL
M(r̂) r ∈ SR

∑
K

FKeiK·r
r ∈ 1

(14)
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nucleus), while in the interstitial region (I), F is written as a
plane-wave expansion, where K is a reciprocal lattice vector.
The Laplacian of the density has a similar form

with

where primes represent differentiation in the radial coordi-
nate. In both expressions, the expansion is carried not to the
infinite set of local spherical harmonics and plane waves,
but it is included only up to certain cutoff values Lmax and
Kmax. This truncation creates discontinuous gaps on the
muffin tin surface that need to be dealt with by the
topological algorithms. The absence of continuity in F(r) and
L(r) is thus a basic, inescapable feature of the FPLAPW
densities.

How does the lack of continuity at the muffin tin surface
affect the results of the analysis? We have found that the
discontinuity is invisible to both the CP localization method
and to the gradient path tracer, provided there are no spurious
critical points on the muffin tin surface. This applies for both
the density and its Laplacian. The spurious CPs trap gradient
path integrations in an anomalous way and, being the
consequence of a discontinuous gap, their number do not
fulfill the Morse sum criterion. Tuning of the calculation
parameters seems to be the only way around the problem,
being most sensitive to the variation of RmtKmax and Rmt. A
very large value of Lmax could, in principle, be effective but
it is not possible to go beyond a hard-coded 10 value without
a severe reprogramming of many parts of the wien2k45,46

code.
There is a further consequence of the discontinuity that

must be taken into account. The discontinuity introduces a
surface term in the integral of L(r) over the unit cell. Using
Gauss theorem, it can be expressed as a flux of the density
gradient across the muffin surfaces:

where R runs over the atoms in the cell, Fi and FR are the
density function forms in the interstitial, and the R muffin
(eq 14), respectively. This result has two important conse-
quences: the G and K forms of the kinetic energy are not
equivalent, the one entering the total energy expression being
G65,66 and the integral of L(r) within the topological (∇F)
basins is not zero. Note that, although the sum in eq 17 can
be easily computed to correct the integral of L over the cell,
it is not possible to do the same to the atomic expectation
values of L, except in the cases where no muffin crosses the
interatomic surface.

To test our algorithms, we have selected a set of systems,
containing an assortment of bonding characters and struc-
tures. These are listed in Table 3, along with their main

calculation conditions. The number of k-points in the full
first Brillouin zone (1BZ) was chosen so that the energy
converged to the precision of the code in all the crystals but
the metallic (Li, Mg, Na, Pb, and Sn). The FPLAPW
calculations have been done using the Perdew-Burke-
Ernzerhof67 GGA functional. We have used the runwien text
interface68 to wien2k to carry out the calculations and a
modified version of critic69 to perform the QTAIM analysis.

All the crystals in the Table 3 have been examined for
the existence of spurious CPs by means of a direct and simple
test: a number of nθ × nφ points are uniformly distributed in
spheres of radii Rmt - ε and Rmt + ε around each atom,
with ε ) 10-3 bohr. Consequently, one of the spheres is
inside the muffin tin and the other is in the interstitial region.
Every point in the inner sphere has a counterpart in the other
one, at a distance 2ε. The radial component of the gradient
of the scalar field, fr, is then computed at each pair of points.
Spurious CPs exist whenever a pair of points differ in the
sign of their fr. The calculation conditions were then modified
for each crystal until some combination produced a density
and Laplacian free from discontinuities on all tested direc-
tions. This extense exploration of calculation parameters has
revealed that, in these systems, the occurrence of spurious
CPs does not depend on the number of k-points, but it is
affected heavily by the values of RmtKmax and Rmt. In most
cases, the electron density was correct under a wide range
of calculation conditions and it was the Laplacian the
function posing real difficulties to the QTAIM analysis. The
process of finding good parameters for III-V elements was
specially painstaking, as no pattern for the occurrence of
trouble was apparent.

5.2. Navigation in the L(r) Surface. Now, we describe
the computational details of the analysis of L(r). The first
step is the computation of the shell structure of the scalar

∇2F(r) ) { ∑
LM

fLM(r)YL
M(r̂) r ∈ SR

-∑
K

K2FKeiK·r
r ∈ 1

(15)

fLM(r) ) FLM′′ + 2
r
FLM′ - L(L + 1)

r2
FLM (16)

∫cell
L(r)dr ) -∑

R
ISR (∇FR - ∇Fi) · dS (17)

Table 3. Test Cases for the Evaluation of the Algorithms
Related to the Analysis of L(r)a

crystal phase RmtKmax

k-points
(1BZ) Rmt,1 Rmt,2

AlN blende 9.0 1000 1.77 1.30
AlN wurzite 9.0 1000 1.77 1.30
AlP blende 9.0 4000 1.50 2.10
BN blende 10.0 1000 1.45 1.20
BP blende 10.0 2000 1.59 2.00
C graphite 9.0 60000 1.20
C diamond 9.0 60000 1.30
GaN blende 9.0 1000 1.70 1.40
GaN wurzite 9.0 1000 1.70 1.40
GaP blende 11.0 1000 2.00 2.00
Ge diamond 11.0 8000 2.21
Li BCC 9.0 60000 2.20
Mg HCP 9.0 60000 2.90
NaCl rock salt 9.0 60000 2.30 2.30
Na BCC 9.0 60000 2.20
Pb diamond 10.0 60000 2.30
Pb FCC 10.0 60000 2.30
Si diamond 11.0 8000 2.21
Sn diamond 10.0 8000 2.30
Sn tetragonal 10.0 14000 2.60

a All the geometries correspond to the experimental
structures,70,71 with the exception of the diamond phase of Pb,
that was optimized using FPLAPW and a Perdew-Burke-
Erzenhof exchange-correlation functional, to a cell parameter of a
) 13.339 bohr.
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field around each atom. On bonding, the inner shells of L(r)
are largely unaffected, while the valence shells are distorted
to accommodate the environment. The position of the radial
maxima and minima are determined by bracketing and
golden section search in a number of rays emerging from
the nucleus and uniformly distributed. The resulting shells
are classified into: (a) valence shells, distorted by the
chemical environment and possibly not fulfilling the shell
Euler sum, and (b) core shells, resembling the atomic shells
and fully closed. The innermost core shells do not convey
any chemical information and are the most difficult to treat
from the point of view of the algorithms. Therefore, for the
heavier elements, we define an effective nucleus, that is
composed of the real nucleus and a number of shells up to,
and including, a X- shell, where X ) K, L, .... The structure
within this effective nucleus is ignored by the algorithms,
except that their actual contribution to the Morse sum is taken
into account. The election of a shell that is a radial minimum
as the frontier makes the effective nucleus a basin of L(r),
easy to integrate as a sphere.

The localization of the critical points of L(r) is based on
the Newton-Raphson (NR) method with two modifications
to take into account the shell structure of L(r). First, the same
seeding scheme as in the electron density is used.42,69

Namely, the irreducible wedge of the WS cell (IWS) is built
by applying the local symmetry of the origin to the full WS
cell. The IWS is split into disjoint tetrahedra and each of
them undergoes a barycentric subdivision process to deter-
mine the starting points for the NR exploration. This method
allows the rapid localization of the symmetry-forced CPs of
L(r). This scheme is inherently suited for solids, and far
superior in efficiency to its molecular counterparts based on
the search between pairs, triplets and quartets of atoms. In
this particular scalar field, this strategy allows the localization
of all the valence CPs, but requires high subdivision levels
to locate the shell CPs. Therefore, we have added a new set
of seed points, placed at the spherical shells of each atom,
so as to locate the in-shell CPs.

The second necessary modification to NR consists of
switching to spherical coordinates near the nuclei, at distances
lower than the largest core shell. When the NR sequence of
points falls into one of the inner shells, the transformation
to spherical coordinates effectively decouples the radial from
the in-shell (angular) coordinates. The Hessian matrix is thus
approximately blocked. Special care must be taken regarding
the numerical errors in the computation of the elements
of the gradient (fi, i ) r, θ, φ) and the Hessian (fij, i, j )
r, θ, φ). The radial components (fr and frr) are much larger
than the ones involving the angular coordinates, so that the
transformation of derivatives from Cartesian (xk values) to
spherical (si) coordinates:

is subject to cancellation errors. In FPLAPW densities, a
workaround to this problem is calculating the nonradial terms

of the gradient and Hessian in the muffin tin by using an
expression of L(r) where the spherical term L ) 0, M ) 0
has not been summed. This eliminates the dominant spherical
contribution to the value of L(r) and prevents the cancellation
errors in the transformation to spherical coordinates.

Additionally, a modified stop criterion for NR is necessary
in the shells. Usually, a CP is located whenever |∇f(r)| < ε
where ε is customarily set to 1 × 10. However, it is too
difficult to find a radial component of the gradient below
that threshold, because of the rapidly oscillatory character
of L(r) in the core region. Therefore, when in core shells,
the norm of the gradient is calculated using only the angular
coordinates.

The topologies of the test cases have been determined with
the modified NR method. All the CPs of L(r) have been
located in less than two minutes on a typical desktop PC
(see Table 4). The topologies fulfill the global and shell
Morse conditions. If smaller effective nuclei are considered,
the success of the modified NR algorithm in the innermost
shells varies with the atom involved. For example, all the
CPs of Ge are located, even if the effective nucleus is shrunk
to only one shell, but this is not possible for chlorine (both
in NaCl and in Cl2), for which the K-, L+, and L- shells do
not fulfill the local Morse sum using the default parameters
of our modified NR. Popelier32 and Gatti72 have published
finding the full topology of L(r) by using the eigenvector-
following method,73 which we have also implemented using
a transformation to spherical coordinates in core shells, as
described above. By comparing to our modified NR method,
we have found that eigenvector-following does not improve
on the results of our method in terms of efficiency or success
in locating CPs of L(r), so we have opted for the simpler
NR approach.

∂

∂si
) ∑

k

∂
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Table 4. Summary of the Analysis of L(r) in the Test
Casesa

crystal phase L(r) topology ttop (s)

AlN blende 4(52)|6(152)|6(144)|5(44) 32.0
AlN wurzite 7(26)|13(76)|14(74)|8(24) 97.1
AlP blende 5(56)|8(192)|8(192)|5(56) 31.4
BN blende 3(48)|6(128)|7(128)|6(48) 15.6
BP blende 6(92)|8(216)|8(184)|6(60) 19.7
C graphite 4(20)|10(70)|10(70)|5(20) 29.5
C diamond 2(64)|4(224)|5(208)|3(48) 9.7
GaN blende 4(52)|6(152)|6(144)|5(44) 25.3
GaN wurtzite 7(26)|14(78)|13(72)|6(20) 90.7
GaP blende 5(56)|7(168)|7(168)|5(56) 16.0
Ge diamond 2(40)|3(176)|4(192)|3(56) 10.6
Li BCC 2(28)|4(120)|4(114)|3(22) 3.6
Mg HCP 4(14)|8(56)|7(58)|3(16) 2.5
NaCl rock salt 4(64)|6(200)|5(200)|3(64) 5.6
Na BCC 2(14)|6(78)|4(112)|1(48) 6.4
Pb diamond 2(40)|3(96)|3(96)|2(40) 15.4
Pb FCC 2(28)|3(96)|3(112)|3(44) 4.0
Si diamond 4(168)|6(352)|6(256)|3(72) 11.6
Sn diamond 2(40)|3(176)|4(192)|3(56) 15.8
Sn tetragonal 2(20)|6(80)|7(104)|4(44) 19.8

a The full topology of L(r) is shown in n|b|r|c format. Each of
these fields is of the form x(y) where x and y are the number of
CPs in the asymmetric and conventional unit cells respectively. All
the topologies fulfill the global and shell Morse sum conditions.
The cpu times correspond to a typical desktop PC. The
computational cost increases in lower symmetry systems (e.g.,
wurtzite) because more NR search seeds are used.69
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5.3. Integration on the L(r) Basins. The other funda-
mental task in the analysis of L(r) is the integration of
gradient paths (GP). The basin integration method that we
have chosen is bisection so the purpose of tracing of gradient
trajectories boils down to two tasks: (a) locating the terminal
points of the paths originating at a given gradient source
and (b) depicting the behavior of the gradient vector field.
In both of them, the primary concern is not the extreme
accuracy of the paths but the computational efficiency, for
GP tracing is the bottleneck of the integration of atomic
properties. Consequently, we have chosen a simple explicit
Euler method and included some modifications, similar to
those introduced in the NR method, to provide for the special
shell structure of L(r).

As in NR, the integration of the GPs near the nuclei is
done in spherical coordinates. For sufficiently inner shells,
the adaptive step shrinks to the point of making the
navigation impracticable, even with high order one-step
methods. To avoid this problem, we have eliminated the
radial coordinate from the GP tracing algorithm, provided
several conditions are met: (a) the trajectory is traversing
one of the known shells, (b) the shell has the correct
curvature (frr > 0 if the trajectory goes downward, frr < 0 if
upward), (c) the step size is smaller than 10-3 bohr, and (d)
the absolute value of the radial curvature (frr) is greater than
a certain value (in the L(r) scalar field, this value is 1 au).
For safety, the radial coordinate is optimized whenever the
Newton-like step |fr/frr| is greater than 10-3 bohr. For core
shells, this is seldom the case, as they remain approximately
spherical on bonding. The radial coordinates are considered
again whenever one of the above conditions, except (c), is
not met, thereby taking into account the possibility of partial
shells of L(r).

If only the ending critical points of the GPs are needed,
we have found that the use of �-spheres (the atomic trust
spheres74) accelerates the assignment of the terminal atom
by 4-6 times. The �-spheres are centered around each atom,
with their radii being initially set to 75% of the distance of
the atom to its closest bond critical point. The election of
this radii follows from the ready availability of the complete
list of CPs. When a GP enters a �-sphere, the terminal atom
is automatically assigned to the owner of the sphere. This
method prevents the expensive tracing of the gradient path
near the nucleus, where the step size shrinks to prevent the
gradient path from bouncing around the critical point. The
case where one of the IAS retraces into one of the �-spheres
is rare but possible, and a clear indication of this situation is
the basin limit being assigned incorrectly to the surface of a
�-sphere. Should this happen, the �-sphere radius is de-
creased by a factor and the basin limit is recalculated. We
have checked that, in all the systems we examined, the value
of the integrated atomic properties is not affected by the use
of �-spheres.

6. Topological Analysis of Group IV
Allotropes

As a first application of the newly developed topological tools
we are going to analyze the diamond phase of the group IV
elements: from C to Pb. We will also examine, as a term of

comparison, some allotropes that compete in stability with
the diamond phase or are even the most stable phase under
normal pressure and temperature: the graphite phase of C,
the white or �-Sn, and the fcc or R-Pb.

6.1. Electronic Structure Calculations. The electronic
structure of all the crystals has been obtained from FPLAPW
calculations using the wien2k45,46 code with the new runwien
text interface.68 All calculations have been done using the
Perdew-Burke-Ernzerhof67 exchange and correlation func-
tional. Care has been taken to converge the calculations with
respect to all relevant internal parameters, in particular the
muffin tin radius (RMT), the number of planewaves used as
basis set (controlled by RKMAX), and the grid used to
integrate the first Brillouin zone (controlled by KPTS). Table
5 shows the value of these essential parameters used in our
calculations. It is important to notice that our requirements
are somewhat different from those of a typical wien2k
calculation. In most cases the FPLAPW codes are run using
a muffin tin zone as large as possible to diminish the
computational effort. In our case, we have to play carefully
with the parameters to avoid, as much as possible, the
discontinuity of the electron density and its derivatives at
the muffin boundaries.

We have determined the equilibrium properties of the
crystals, as a check of the calculations, and the most relevant
results are collected in Table 6. In general, the equilibrium
cell lengths are obtained within 1-2% of the experimental
values, and the bulk moduli within 3% for the light elements
and 10% for Sn and Pb. We have not included the graphite
equilibrium geometry as it is well-known that typical GGA
functionals are defective in their representation of intermo-
lecular interactions and the graphene sheets are too loosely
bound.

Table 5. wien2k Calculation Parameters Used for the
Topological Analysis

crystal KPTS RKMAX RMT

C 60000 9.0 1.30
C (graphite) 60000 9.0 1.20
Si 8000 11.0 2.21
Ge 5000 11.0 2.10
Sn 8000 10.0 2.30
Sn (white) 14000 10.0 2.60
Pb 60000 10.0 2.70
Pb (fcc) 60000 10.0 2.30

Table 6. Calculated (First Row) and Experimental (Second
Row) Equilibrium Properties

crystal a (Å) c (Å) B (GPa)

C 3.5827 444.3
3.568 444.0

Si 5.4797 91.2
5.4307 99.2

Ge 5.5934 75.1
5.6574 77

Sn 6.6563 49.1
6.49 53

Pb 7.0589 28.7
Sn (white) 5.9213 3.2280 63.7

5.8197 3.1749 57.9
Pb (fcc) 5.0550 36.0

4.9502 43.2
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C and Si are predicted to be semiconductors in the
diamond phase, with an indirect band gap of 4.13 and 0.58

eV, respectively. These band gaps are significantly smaller
than the experimental values of 5.5 and 1.1 eV, following

Figure 2. Band structure and density of states (DOS) for the diamond phases of C-Pb, graphite C, white Sn, and fcc Pb. The wien2k
GGA calculations correspond to the experimental geometry, when available, and to the predicted equilibrium geometry otherwise.
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the well-known trend of DFT GGA calculations. Ge and Sn
in the diamond phase, and the graphite phase of C have a
null band gap in our calculations, as it can be observed in
Figure 2, but the Fermi level occurs in the limit of two bands,
so the electronic density of states (DOS) is essentially zero
at the Fermi level. White Sn and the fcc and diamond phases
of Pb are completely different, with the Fermi level occurring
in a energy region with a large DOS that confers a clear
metallic behavior to these crystals.

The wave functions that we will analyze in the next
sections correspond to the calculations performed at the
experimental geometry. We have also examined the topo-
logical properties of the wave functions obtained from DFT
LCAO calculations with the crystal code,75,76 but given that
the results are essentially equivalent, they will not be
discussed again.

6.2. Topology of the Electron Density. Tables 7 and 8
describe the position and main properties of the critical points
of the electron density for the diamond and nondiamond
crystal structures of C-Pb. One of the most relevant
observations is that all the diamond structures show the same
topology, with a single type for each of n, b, r, and c critical
points (NCP, BCP, RCP, and CCP, respectively), all of them
occupying symmetry-defined positions within the unit cell.
Once revealed this uniformity, the properties of the CPs
clearly show important differences for each element. The
electron density at the nuclear position shows a markedly
correlation with the atomic number: Fn ) 0.11378Z3.7415,
with a linear correlation coefficient of corr(F, Z) ) 99.4%,
similar to the law cited by Bader1 for nonrelativistic
calculations. The properties at the BCP are particularly
significant. The electron density at the BCP decreases as the
cubic cell length increases: Fb ) 6.412656a-2.57024 (corr )
-99.5%). The BCP Laplacian shows a well-defined trend
in the C-Pb sequence, increasing from the negative -0.55144
e/bohr5 of C, typical of a highly covalent bond, to the small
but positive +0.03082 e/bohr5 of Pb, closed-shell like and

similar to the values found in many metals. This negative/
positive ∇2Fb difference separates C, Si, and Ge on the
covalent side, and Sn and Pb on the closed-shell group.

The non-diamond allotropes offer some fine aspects for
contrast and comparison to the above crystals. Graphite, for
instance, shows two different types of C-C BCPs: a strong
bond that keeps together the graphene sheets, and a much
weaker BCP gluing together the sheets. The first BCP has a
larger electron density and a more negative Laplacian than
the diamond structure, close, in fact, to the values shown by
the C-C BCP in benzene. The �-Sn and R-Pb structures
show a marked difference in topology with respect to their
diamond crystals: the BCP is weaker (smaller Fb and more
positive ∇2Fb) and the electron density is globally flatter77

(f ) Fc/Fb is 21.4% in �-Sn and 37.7% in R-Pb versus 2.7%
and 2.5% in their respective diamond structures).

All together, we can see that the crystalline structure has
a strong influence on the electron density topology, and that
a clear group trend can be observed only after we examine
the different elements on a common crystal phase.

6.3. Topology of the L(r) Field. One of the most
remarkable aspects of the topology of the L(r) field is that
the total number of critical points increases heavily with the
atomic number of the atoms involved but the overall
complexity, once the core CP’s are discounted, does not
follow this trend but rather it appears to depend on the nature
of the bonding and, in general, it tends to diminish in going
from the light to the heavy elements. This effect is evident
in the topologies presented in Tables 9 and 10. The L(r) are
grouped into core subshells when their distance to the closest
atomic nucleus is quite close to the minima and maxima of
the radial L(r) function. The core character of those CPs can
be confirmed by the fact that the attraction basins of all core
NCP’s form a small sphere, as it will be discussed later.

The L(r) critical points (L-CPs) can be classified into core,
valence and interstitial. A core subshell is formed by the
breaking of one minimum or maximum of the atomic radial
L(r) function, all CP’s in the subshell keep an almost identical

Table 7. Topology of the Electron Density for the Diamond
Structuresa

CP Wyckoff position F(rc) ∇2F(rc)

C 8a (1/8, 1/8, 1/8) 1.28217 × 102

b 16c (0, 0, 0) 0.24005 -0.55144
r 16d (1/2, 1/2, 1/2) 0.21507 +0.10522
c 8b (3/8, 3/8, 3/8) 0.01323 +0.07595
Si 8a (1/8, 1/8, 1/8) 1.89360 × 103

b 16c (0, 0, 0) 0.08369 -0.12344
r 16d (1/2, 1/2, 1/2) 0.00559 +0.01353
c 8b (3/8, 3/8, 3/8) 0.00324 +0.00897
Ge 8a (1/8, 1/8, 1/8) 3.12582 × 104

b 16c (0, 0, 0) 0.07502 -0.03556
r 16d (1/2, 1/2, 1/2) 0.00436 +0.01021
c 8b (3/8, 3/8, 3/8) 0.00257 +0.00652
Sn 8a (1/8, 1/8, 1/8) 1.89122 × 105

b 16c (0, 0, 0) 0.05427 +0.00270
r 16d (1/2, 1/2, 1/2) 0.00260 +0.00510
c 8b (3/8, 3/8, 3/8) 0.00148 +0.00315
Pb 8a (1/8, 1/8, 1/8) 2.96523 × 106

b 16c (0, 0, 0) 0.03885 +0.03082
r 16d (1/2, 1/2, 1/2) 0.00166 +0.00258
c 8b (3/8, 3/8, 3/8) 0.00099 +0.00162

a Wyckoff positions correspond to the Fd3jm group. All values in
atomic units.

Table 8. Topology of the Electron Density for the
Non-Diamond Allotropesa

CP Wyckoff position F(rc) ∇2F(rc) x

C1 2b (0, 0, 1/4) 1.28333 × 102

C2 2c (1/3, 2/3, 1/4) 1.28325 × 102

b1 2a (0, 0, 0) 0.00588 +0.01767
b2 6h (x, 2x, 1/4) 0.30199 -0.88798 0.83316
r1 6g (1/2, 1/2, 0) 0.00410 +0.01400
r2 2c (2/3, 1/3, 3/4) 0.02271 +0.13476
c 4f (1/3, 2/3 x) 0.00340 +0.01317 0.47142
Sn 4a (0, 0, 0) 1.89128 × 105

b1 4b (0, 0, 1/2) 0.02838 +0.01723
b2 8c (0, 1/4, 1/8) 0.03751 +0.01222
r1 8d (0, 1/4, 5/8) 0.01303 +0.01733
r2 16f (x, 1/4, 1/8) 0.00805 +0.01397 0.29807
c 16g (x, x, 0) 0.00803 +0.01391 0.28456
Pb 4a (0, 0, 0) 2.96493 × 106

b 24d (1/4, 1/4, 0) 0.01788 +0.02222
r 32f (x, x, x) 0.01287 +0.01518 0.31837
c1 8c (1/4, 1/4, 1/4) 0.01208 +0.01361
c2 4b (1/2, 1/2, 1/2) 0.00674 +0.00904

a The Wyckoff positions correspond to the space groups P63/
mmc (graphite), I41/amd (white Sn), and Fm3jm (R-Pb).
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distance to the originating nucleus, and the number of CP’s
fulfill the Euler relationship (eq 11). In addition, the attraction
basins of the set of core NCP’s form a small sphere around
the nucleus, as it will be discussed later.

Valence L-CPs are originated from the outermost or
perhaps the two outermost extrema of the atomic L(r) radial
function. The distance to the nucleus, however, is not so
closely maintained as in the core case, and some CPs can
be displaced toward the interatomic space, or even merged
with the CP’s from other nuclei, so the Euler relationship is
not necessarily fulfilled by a valence subshell.

Interstitial L-CPs, finally, cannot be assigned to a single
atom, but they lie well into the interatomic space. Interstitial
NCP’s, typically have a negative L value, at difference from
core and valence NCP’s. In other words, interstitial NCP’s
do not show an increased concentration of electron density
relative to their differential neighborhood. This counterin-
tuitive property turns to be one of the most prominent
features of interstitial regions.

6.3.1. Graphs for the L(r) Topology. The complexity of
the L(r) topology is difficult to examine without an appropriate
map. Aray et al.78-82 and Popelier et al.6,11,31,33 have taken
great advantage of special chemical graphs for that purpose.
Drawing a significant L graph is not trivial nor automatic, but
it involves some creative decisions about what information is
relevant and what should be left out to avoid cluttering.

Figures 3 and 4 shows our interpretation of the relevant L(r)
topology for the diamond and non-diamond structures. Some
of the most relevant features correspond to the organization of
the valence L-BCPs and the bond paths that connect them to
the NCPs. Many of those L-bond paths are quite curved lines.
In particular, bond paths that connect NCPs in the same subshell
and thus are equidistant to the generating nucleus are almost
circular arcs. This sharply contrast with the F-bond paths that
are typically straight lines and do only curve away from the
internuclear axis in such cases as the occurrence of steric stress
or electron deficient bonding.1

Table 9. Topology of the L(r) Field for the Diamond Structuresa

core: t, n total: t, n type/Wyckoff rcp F(rcp) ∇2F(rcp) x coord. z coord.

C n 1 8 3 48 n I 8b (3/8, 3/8, 3/8) 0.013 24 +0.075 95
b 1 32 5 208 n val 32e (x, x, x) 0.277 42 -0.895 63 0.042 41
r 1 48 4 224 b bond 16c (0, 0, 0) 0.240 05 -0.551 44
c 1 32 2 64 b I 96g (x, x, z) 0.067 70 +0.172 08 0.078 94 0.840 82
last K_ b I 16d (1/2, 1/2, 1/2) 0.021 51 +0.105 22

b val 48f (1/8, 1/8, x) 0.213 00 -0.197 58 0.269 23
r val 32e (x, x, x) 0.178 75 +0.030 93 0.210 77
r I 96h (x, \bbar\x\ebar\, 0) 0.067 27 +0.173 36 0.137 86
r I 48f (1/8, 1/8, x) 0.080 81 +0.184 42 0.374 41
c I 32e (x, x, x) 0.078 47 +0.206 77 0.254 24

Si n 2 40 4 80 n I 8b (3/8, 3/8, 3/8) 0.003 24 +0.008 97
b 3 112 7 288 n val 32e (x, x, x) 0.086 56 -0.138 22 0.024 69
r 3 128 7 400 b bond 16c (0, 0, 0) 0.083 69 -0.123 44
c 2 64 4 192 b I 96g (x, x, z) 0.020 75 +0.027 13 0.189 91 0.822 96
last L_ b I 16d (1/2, 1/2 1/2) 0.055 89 +0.013 54

b val 48f (1/8, 1/8, x) 0.051 04 -0.009 31 0.301 72
r val 32e (x, x, x) 0.036 73 +0.017 55 0.231 47
r I 96h (x, \bbar\x\ebar\, 0) 0.021 51 +0.027 49 0.364 84
r I 48f (1/8, 1/8, x) 0.022 02 +0.027 93 0.386 10
r I 96g (x, x, z) 0.021 23 +0.027 99 0.058 03 0.360 72
c I 96g (x, x, z) 0.021 46 +0.027 99 0.322 40 0.628 91
c I 32e (x, x, x) 0.021 52 +0.028 79 0.257 43

Ge n 3 72 5 96 n I 8b (3/8, 3/8, 3/8) 0.002 57 +0.006 52
b 5 192 7 304 n bond 16c (0, 0, 0) 0.075 02 -0.035 56
r 5 208 6 304 b I 96g (x, x, z) 0.025 51 +0.029 23 0.065 84 0.868 20
c 3 96 3 96 b I 16d (1/2, 1/2, 1/2) 0.004 36 +0.010 21
last M_ r I 96h (x, \bbar\x\ebar\, 0) 0.025 55 +0.029 27 0.286 01

Sn n 4 104 6 128 n I 8b (3/8, 3/8, 3/8) 0.001 48 +0.003 15
b 8 304 10 416 n bond 16c (0, 0, 0) 0.054 27 +0.002 70
r 7 336 8 432 b I 96g (x, x, z) 0.022 12 +0.018 93 0.057 79 0.884 87
c 4 144 4 144 b I 16d (1/2, 1/2, 1/2) 0.025 98 +0.005 01
last N_ r I 96h (x, \bbar\x\ebar\, 0) 0.022 10 +0.018 99 0.400 13

Pb n 5 136 6 144 n I 8b (3/8, 3/8, 3/8) 0.000 99 +0.001 62
b 10 384 11 400 b I 16d (1/2, 1/2, 1/2) 0.001 66 +0.002 58
r 8 416 9 432 r bond 16c (0, 0, 0) 0.038 85 +0.030 82
c 5 176 5 176
last O_

a The left part of the table resumes the type (t) and number (n) of CPs included in the core and those in the whole crystal unit cell. Last
is the identity of the last core subshell. The right part of the table is a detailed description of the valence CPs, classified into valence, bond
(a kind of valence CP placed in the line between two atoms bonded by the F(r) field), and interstitial (I, not recognizable as belonging to any
single atom or pair of atoms). In the case of Pb, the algorithm fails to detect a RCP of multiplicity 96 in the L- core shell, but the complete
topology can be recovered from the invariance laws that rule shell and cell CPs.
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Another striking difference between the L and F graphs is
that while the five elements, C to Pb, shows identical F graph
in the diamond phase, their L graph can be grouped into
three quite different models. C and Si form the first model,
that closely resembles a prototypical Lewis image for
covalent bonding: each atom is surrounded by a curved
tetrahedron frame with NCP’s at the vertices. Each NCP is
then connected through a L-bond path to the NCP of a nearest
neighbor (NN) atom. As a consequence, the middle point
between two NN atoms (the 16c Wyckoff position in Table
7 and Table 9) is simultaneously a F-BCP and a L-BCP.
Furthermore, this double BCP occurs in a region of signifi-
cant local charge accumulation, thus completing the char-
acterization of the C and Si L graph as a prototype of
covalently bonded system.

This Wyckoff 16c position has the key to characterize the
three types of L graphs in the diamond structure. The second
type is shown by Ge and Sn, where the 16c point continues
to be a F-BCP but it is now a L-NCP, connected through L
bond paths to six other equivalent 16c positions. At the same
time, the outermost valence shell of each atom is now made
of a tetrahedron of CCPs rather than NCPs.

Pb diamond phase shows the third kind of L graph. The
Pb core is quite large, and the only noncore NCPs have
moved into the interstitial region. The 16c position is now a

ring CP and corresponds to a corner in which four interstitial
NCP basins intersect. The valence electron density has been
maximally delocalized and transferred to the interstitial
region.

The nondiamond phases behave like their diamond equiva-
lents. C shows again in the graphite phase a covalent pattern,
with two bonded NCPs along the internuclear axis, the
F-BCP and the L-BCP occurring at the same position, within
a region of increased electron density concentration. Of
course, rather than a tetrahedral pattern, NCPs form now a
flat triangle surrounding each C nucleus. In Mulliken terms,
the sp3 arrangement has been converted into a sp2 one. White
Sn and fcc Pb also show the same pattern as their corre-
sponding diamond phases.

As described in section 4, the shape of the valence electron
density is affected by the relativistic treatment of the crystal.
To measure the sensitivity of L graphs to this effect, we have
recalculated Sn and Pb in both diamond and experimental
phases without the scalar relativistic correction. The L
topology of Sn is unaffected in the diamond phase, while
the changes in the �-Sn phase are minor: a L-BCP bonding
two interstitial maxima and a L-RCP are displaced to a lower
symmetry position, without any significant consequence on
the preceding discussion. The effect is more pronounced on
both phases of Pb. In the fcc phase, a number of new CP

Table 10. Topology of the L(r) Field for the Non-diamond Allotropesa

core: t, n total: t, n type/Wyckoff rcp F(rcp) ∇2F(rcp) x coord. z coord.

graphite n 2 4 5 20 n I 4f (1/3, 2/3, z) 0.003 48 +0.012 72 0.482 23
b 2 12 10 70 n val 6h (x, 2x, 1/4) 0.323 37 -1.132 02 0.881 25
r 2 12 10 70 n val 6h (x, 2x, 1/4) 0.322 96 -1.126 87 0.785 52
c 2 8 4 20 b I 6h (x, 2x, 1/4) 0.301 99 -0.887 98 0.833 29
last K_ b I 4f (1/3, 2/3, z) 0.068 83 +0.113 31 0.628 53

b I 12k (x, 2x, z) 0.071 78 +0.117 92 0.175 76 0.860 34
b val 12k (x, 2x, z) 0.179 63 -0.096 52 0.393 24 0.680 88
b I 2c (1/3, 2/3, 1/4) 0.022 71 +0.134 76
b val 12k (x, 2x, z) 0.180 45 -0.091 11 0.064 66 0.182 65
b I 4e (0, 0, z) 0.068 60 +0.114 73 0.128 69
b I 6g (1/2, 0, 0) 0.004 10 +0.014 00
r val 6h (x, 2x, 1/4) 0.210 27 -0.015 96 0.544 96
r I 12j (x, y, 1/4) 0.079 57 +0.235 37 0.560 98 0.667 06
r val 6h (x, 2x, 1/4) 0.210 88 -0.020 57 0.121 58
r val 4f (1/3, 2/3, z) 0.166 11 -0.084 69 0.670 25
r val 4e (0, 0, z) 0.164 37 -0.076 57 0.170 07
r I 12k (x, 2x, z) 0.074 52 +0.118 05 0.206 44 0.640 14
r I 12k (x, 2x, z) 0.074 67 +0.118 47 0.118 31 0.860 22
r I 2a (0, 0, 0) 0.005 88 +0.017 67
c I 6h (x, 2x, 1/4) 0.092 22 +0.252 29 0.475 98
c I 6h (x, 2x, 1/4) 0.092 10 +0.251 88 0.190 86

�-Sn n 4 52 7 80 n I 16g (x, x, 0) 0.008 03 +0.013 91 0.285 99
b 11 144 15 208 n bond 8c (0, 1/4, 1/8) 0.037 51 +0.012 23
r 10 144 13 184 n bond 4b (0, 0, 1/2) 0.028 38 +0.017 23
c 4 56 4 56 b I 16h (0, y, z) 0.014 33 +0.017 03 0.199 36 0.518 18
last N_ b I 16h (0, y, z) 0.021 95 +0.018 52 0.098 24 0.497 51

b I 16f (x, 1/4, 1/8) 0.008 05 +0.013 97 0.296 43
b I 16h (0, y, z) 0.022 07 +0.018 92 0.212 11 0.362 60
r I 8d (0, 1/4, 5/8) 0.013 03 +0.017 34
r I 16f (x, 1/4, 1/8) 0.019 99 +0.020 12 0.138 57
r I 16g (x, x, 0) 0.020 38 +0.018 88 0.422 20

R-Pb n 5 132 7 144 n I 4b (1/2, 1/2, 1/2) 0.006 74 +0.009 04
b 9 336 10 368 n I 8c (1/4, 1/4, 1/4) 0.012 08 +0.013 61
r 9 336 10 360 b I 32f (x, x, x) 0.012 72 +0.015 29 0.336 65
c 5 136 5 136 r I 24d (0, 1/4, 1/4) 0.017 88 +0.022 22 0.833 29
last O_

a See description in Table 9.
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appear, the most important of them being a new interstitial
maximum at the (0, 1/4, 1/4) (24d) position. In the diamond
phase, the 16c maximum reappears, resulting in Pb having
a graph equivalent to Ge and Sn. The greater effects of the
relativistic corrrection in heavier elements couples in this
case with the well-known lability of the topology of F (and

hence L) in metals:83 the flatness of the interstitial part
induces that even small density changes rearrange the valence
topology completely.

Far less important is the effect of changing the exchange-
correlation functional. The topologies of all the crystals
examined are unaffected when calculated at the LDA level.

Figure 3. L graphs for the diamond structures (top, C and Si; middle, Ge and Sn; bottom, Pb). The very large black spheres
contain the nuclei and most of the core structure. Far smaller, L-CPs can be discriminated by the size and color of the spheres
that represent them: NCPs are large and dark (red), BCPs smaller and dark (green), RCPs small and light (light blue), and
CCPs large and light (yellow). L-bond paths are sometimes represented by thin golden lines. The Pb-diamond graph shows the
L ring path, created by the RCP lying in the middle of two nearest neighbors Pb atoms, as a discontinuous line of very thin
spheres (pink).
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6.3.2. Local Properties of the L-NCP Basins. The number,
arrangement, and properties of NCPs is the central issue of
the L(r) topology. The L graphs analyzed previously fail to
communicate the shape, size, and relative importance of the
NCP basins. All L-NCPs in the diamond phase are placed
along the cube diagonal, that is, along the (x, x, x) crystal
direction. We have taken advantage of this coincidence to
produce the illustration in Figure 5. The plots show clearly
the difference between the three types of L graphs described
in the previous subsection (6.3.1). The twin L-NCPs between
two NN atoms observed on C and Si, get converted into a
single NCP at the NN midpoint on Ge and Sn, and finally
the internuclear axis is simply the common edge of four
interstitial NCPs on Pb.

Figure 5 is also a qualitative demonstration of the growing
importance of the interstitial NCP as the atomic number
increases. The core region increases too and, more interesting,
the core subshells form concentric spheres that surround the
atomic nucleus. That a given shell keeps the spherical shape
typical of a free atom can be seen as the ultimate evidence
that it belongs in the core. Contrarily, a significant deforma-

tion from sphericity is a direct proof of the participation of
the corresponding electrons in the valence chemical bonding.

Going beyond the qualitative requires integrating properties
within the L basins. In this regard it must be clear that there
is a fundamental difference between the space partition
induced by F(r) and the partition due to L(r). All kind of
quantum mechanical observables can be integrated within
the basins determined by the zero flux of F(r) condition (eq
3). This is not true for the basins determined by the topology
of L(r) and, for instance, it is not correct to determine the
contribution of a L-NCP basin to the kinetic energy. There
is no problem, however, with the integration of strictly local
properties like the volume, charge, electrostatic field, or
multipolar moments.

Table 11 presents the volume and electronic populations
of the L-NCP basins. We have classified the basins into five
different groups according to its properties: nucleus, core,
valence, bond, and interstitial. The nucleus can include some
L-NCP so internal that we have preferred not to distinguish
them from the atomic position. The “valence” L-NCPs
correspond to the twin maxima situated along a NN inter-

Figure 4. L graphs for the non-diamond structures (upper row, graphite; lower row, white Sn and fcc Pb). The zenithal view of
graphite shows the crystal unit cell using thick cylinders. The Pb-fcc graph shows the equivalent RCP surface and the graph
lines that form this surface.
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nuclear axis. They are characterized by a positive value of
L(r) and belong, accordingly, to the region called VSCC
(Valence Shell Charge Concentration) by Bader.1 The single
“bond” L-NCP, situated midway between NN atoms, can
have a positive (Ge) or negative (Sn) L(r) value. The last
type of L-NCPs, finally, are disconnected from the L graphs
of nuclei, belong to the interstitial region and have, in all
cases, a negative L(r) value.

This classification of L-NCP basins is quite relevant for
the analysis of the local properties. The nuclear and core L
-NCP’s occupy a very small volume but contain a significant
number of the electrons. Valence (C and Si) and bond (Ge
and Sn) NCP’s occupy a part of the cell and contain some
2-3 electrons for each NN pair of atoms. The interstitial
NCP’s, finally, represent most of the cell volume and contain
an electron population that grows from 0.7 e in C and Si to
a shocking 12 e per NCP in Pb.

The important electron population of interstitial regions
is not particular to crystals, but it was already observed by
Malcolm and Popelier34 in molecules like NH3 and H2O.
This fact, which Malcolm and Popelier elude to interpret, is
one of the problematic features if we try to explain the L
populations in terms of a simple Lewis model.

In a classical Lewis description, each C in the diamond
structure uses four electrons to form the same number of
covalent bonds to its NN, remaining two nonbonding
electrons on each C core. Our topological analysis of L(r)
shows a small excess of 0.08 e involved per C on each
covalent bond, but a donation of 0.71 e per C toward the
interstitial space.

The comparison with the Lewis model is even worse in
Si. Now each Si atom uses 1.5 e to form each of its four
covalent Si-Si bonds. The donation to the interstitial space
is quite similar to the diamond case, however, 0.66 e per Si

Figure 5. From left to right: L-NCP basins of C, Si, Ge, Sn, and Pb in the diamond phase. All plots are made in the same scale,
and use the same viewpoint, so the apparent relative size corresponds to the actual size of the basins. The two small spheres
appearing in all the plots correspond to the atomic core regions; between them we can find the single or double “bond” L-NCP,
absent in the case of Pb; the uppermost basin is, in all cases, the interstitial L-NCP.

Table 11. Volume (VΩ, bohr3) and Electronic Population (QΩ, e) of the L-NCP Basinsa

diamond phase

type Wyckoff C: QΩ VΩ Si: QΩ VΩ Ge: QΩ VΩ Sn: QΩ VΩ Pb: QΩ VΩ

nuc. 8a 0.988 0.051 1.049 0.004 8.060 0.043 24.078 0.245 51.264 0.508
core 32e 1.561 0.224 3.428 0.423 4.017 1.319 4.658 1.343
val. 32e 1.078 5.144 1.511 18.628
bond 16c 3.163 22.210 2.331 22.789
I 8b 0.707 17.630 0.658 59.722 3.931 106.627 5.260 179.806 11.959 290.608
total 48.053 306.050 111.946 1081.074 256.226 1222.259 400.534 1847.233 654.836 2371.890
cell 48.000 306.217 112.000 1080.847 256.000 1221.900 400.000 1845.744 656.000 2373.614
error 0.053 -0.167 -0.054 0.227 0.226 0.359 0.534 1.488 -1.164 -1.724
% 0.111 -0.055 -0.048 0.021 0.088 0.029 0.133 0.081 -0.177 -0.073

non-diamond phase

graphite QΩ VΩ white Sn QΩ VΩ fcc Pb QΩ VΩ

C 2b 0.988 0.051 Sn 4a 40.113 5.513 Pb 4a 51.281 0.509
C 2c 0.988 0.051 bond 4b 0.966 11.184 core 32f 2.342 0.688
val. 6h 1.348 5.891 bond 8c 1.816 20.004 8c 2.401 36.549
val. 6h 1.348 5.891 I 16g 1.344 31.188 I 4b 7.174 125.556
I 4f 0.960 41.259
total 23.969 235.931 total 200.350 725.832 total 327.969 818.660
cell 24.000 236.048 cell 200.000 725.647 cell 328.000 818.736
error -0.031 0.116 error 0.350 0.186 error -0.031 -0.076
% -0.130 0.049 % 0.175 0.026 % -0.009 -0.009

a Notice that the calculation of the total properties has been made using partial data with more digits than those shown in the table. The
properties reported correspond to single basins of each type and must be multiplied by the Wyckoff multiplicity to determine the contribution
to the cell property.
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atom. Ge and Sn also accumulate an extra number of
electrons on the NN internuclear space: 3.16 e (Ge) and 2.33
e (Sn) rather than the two electrons expected for a classical
Lewis single covalent bond. The donation to the interstitial
space is significantly increased: 3.93 e in Ge and 5.26 e in
Sn. Finally, Pb lacks the features that could be described as
covalent bonds. Contrarily, all the electrons removed from
the nuclear and core regions now belong to the interstitial
zone: a record 11.96 e per Pb atom.

It is tempting to explain this behavior of group IV elements
as successive steps in the conversion from covalent to
metallic bonding. The small population of the interstitial
zones, similar to the values previously reported for some
covalent molecules,34,34 could be regarded as the minimal
background. Some more cases, and more diverse crystals
and molecules, should be analyzed before this conjecture can
be accepted, however.

The changes induced by the scalar relativistic treatment
of valence electrons are apparent by comparing the Sn and
Pb results to its nonrelativistic counterparts. It was mentioned
in section 4 that the L -graphs are not compatible, so the
comparison is not direct. However, several observations can
be made about these differences: (1) The shell radii are
contracted; the nucleus plus the inner shells loses ap-
proximately 0.1 electrons in Sn, and almost 1 electron in
Pb. (2) The bond basins shrink and lose electrons, the charge
smearing out to the interstitial basins.

The effect of changing the exchange-correlation potential
is, again, not as significant. The cores are almost unaffected,
with a difference in core population that peaks at 0.03
electrons in Pb, with an analogous behavior of the outer core
basins. Regarding the valence and interstitial basins, LDA
assigns less charge to the valence and bond basins, with
slightly larger and more populated interstitial basins than
GGA. The differences between both functionals increase on
advancing to the heavier elements of the group. Exchange-
correlation and relativistic effects are certainly interesting
and, hopefully, will be addressed in a future work, once the
utility of the present methodology is established.

The comparison between the two different phases of C,
Sn and Pb opens an important window for analyzing the
transferability of L-NCP basin properties among distinct
structures and compounds. Diamond and graphite are very
dissimilar in their bonding pattern and cell volume per atom
(38.3 vs 59.0 bohr3, respectively), but the nuclear L-NCP is
almost identical in both crystals (Q ) 0.9875 vs 0.9882 e, V
) 0.0512 vs 0.0512 bohr3), the single bond L-NCP has a
similar number of electrons per C atom (4.31 vs 4.04 e) even
though this region occupies a larger volume in the more
dense diamond phase than in the less dense graphite (20.6
vs 17.7 bohr3) and, finally, the larger differences occur
between the corresponding interstitial L -NCP (Q ) 0.71 vs
0.96 e, V ) 17.6 vs 41.3 bohr3).

This scheme is repeated on Sn and Pb. The transferability
of properties between different structures is almost exact for
the nuclear and core L-NCP basins. Bond and valence L-NCP
show significant regularities, although we need a larger set
of compounds to extract the organizing principles. The
interstitial L-NCP basins, the most unexpected topological

feature of the Laplacian, is also the most variable element,
and much study is required before its role can be clarified.

6.3.3. Local Compressibilities of the L-NCP Basins. The
tetrahedral arrangement of covalently bonded C atoms has
been usually called to explain the extreme hardness of
diamond. The same arrangement, however, does not explain
the large hardness differences between the isostructural group
IV elements. We can gain some insight into the phenomenon
by determining the contribution of the several L-NCP basins
to the elastic properties. We will follow the method proposed
by Martn Pendás et al. on the analysis of F(r)84,85 and
recently applied by Recio et al. to the ELF function.86

The static compressibility (κ) and bulk modulus (B) of a
crystal are defined as

Using in these definitions the partition of the cell volume
into L-NCP basin contributions, V ) ΣΩVΩ, we can write84

where fΩ ) VΩ/V is the fraction of the cell volume occupied
by the Ω basin, and

The local compressibility of a basin is thus defined in the
same way that the compressibility of the whole cell, and the
global value of the crystal is the result of averaging the local
compressibilities in such a way that the contribution of a
basin is proportional to the volume fraction of the basin in
the crystal cell.

To determine the local compressibilities of the group IV
crystals we have followed the static model, in which the
vibrational entropy is neglected by assuming a temperature
of zero Kelvin, and the zero point vibrational energy is also
neglected. Under these conditions the pressure is given by

where V and E are the cell volume and energy, result from
the quantum mechanical calculation, and A ) E + Avib(T, V)
≈ E would have been the Helmholz free energy.

The actual sequence of calculations goes as follows. First,
some 11-15 points of the E(V) curve are determined, with
the volume bracketing a range of (10% around the
experimental geometry. Once verified that this range ef-
fectively contains the equilibrium volume, the pressure is
obtained from eq 23, using a polynomial or a Birch-
Murnaghan function to fit the calculated E(V) points.
Simultaneously, a topological analysis is performed on each
wave function and the volumes of the L-NCP basins are
determined. The V(p) and VΩ(p) data are used to evaluate
the crystal and the local compressibilities, with a polynomial
fitting to the data being again instrumental in obtaining the
derivatives. The results from this analysis are presented in
Table 12.

κ ) 1
B

) - 1
V(∂V

∂p ) (20)

κ ) ∑
Ω

fΩκΩ and
1
B

) ∑
Ω

fΩ
1

BΩ
(21)

κΩ ) 1
BΩ

) - 1
VΩ

(∂VΩ

∂p ) (22)

p ) -(∂A
∂V)T

≈ -(∂E
∂V) (23)
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The results in Table 12 provide an excellent confirmation
of the classification of the L-NCPs. Nuclear and core NCPs
fill a small fraction of the cell volume and, more significantly,
have a very small compressibility, less than 1% of the value
of κ for the whole crystal. In sharp contrast, the values of
κΩ for the valence, bond, and interstitial L-NCPs are of the
same order of magnitude than κ, smaller in the case of
valence and bond regions and larger in the case of interstitial
ones.

Restricting our analysis to the diamond phase, the extreme
hardness of C is the consequence of the small compresibility
of all the L-NCP regions. C and Si show a similar
contribution balance, fval ) 54-55% and fI ) 46-44%, but
the κΩ values are several times larger in Si than in C. Ge
and Sn show both the progressive increase in the coefficient
of the interstitial zone and the increase of the κΩ values for
all the zones. Finally, the soft metal character of Pb is almost
exclusively because of the large and quite compressible
interstitial regions.

Graphite shows clearly the importance of the crystalline
structure. Compared with the diamond phase, graphite
presents an interstitial zone larger and more compressible.
The atomic number, however has a similar or larger
influence, so the search for truly hard compounds can be
restricted to the lightest elements. A topological partition of
the shear modulus could be of interest as it would show the
graphene sheets hard compared to the larger compressibility
perpendicular to the sheets. We are working toward achieving
a practical way of partitioning the elastic constants of
arbitrary crystals.

�-Sn and R-Pb, being significatively more dense than their
diamond allotropes, show also a larger value for the bulk

modulus, discarding the exclusive influence of the tetrahedral
coordination on the hardness of group IV elements. To be
fair in this conclusion, we should remember that �-Sn and
R-Pb show a metallic rather than covalent behavior and the
hardness of single crystals is mostly controlled by the shear
and not by the bulk modulus.

Diamond and nondiamond phases agree, anyway, on the
fundamental importance of the interstitial regions in deter-
mining the bulk modulus and compressibility of crystals.

7. Conclusions and Perspectives for Future
Work

The topology of L(r) is far more complex than the topology
of F(r). First, L(r) retains the shell structure inherited from
the isolated atoms. Second, the range of L(r) goes from -∞
to +∞, giving rise to maxima, for instance, with L < 0 and
others with L > 0, both having a different chemical
interpretation. Third, L(r) has more critical points than F(r),
and their number increases heavily with the atomic number
of the element. Fourth, L basins tend to be more irregular,
and the source or sink point of the basin can be separated
from the geometrical center, thus leading to a more difficult
integration of the basin properties.

Taking advantage of the shell structure is important in
designing and adapting efficient algorithms, like the radial
navigation method presented in section 5. It is also particu-
larly important for simplifying the analysis and presentation
of the L(r) topology by removing unimportant core features
in a controlled way. Basin plots (Figure 3) and L graphs
(Figure 5) have been found to be fundamental instruments

Table 12. Volume Fraction (fΩ, %) and Local Compressibility (κΩ, TPa-1) of the L-NCP Basinsa

diamond phase:

type Wyckoff C: fΩ κΩ Si: fΩ κΩ Ge: fΩ κΩ Sn: fΩ κΩ Pb: f Ω κΩ

nuc. 8a 0.133 0.008 0.003 0.004 0.026 0.021 0.098 0.004 0.172 0.019
core 32e 0.648 0.018 1.043 0.005 2.116 0.083 1.811 0.210
val. 32e 54.126 1.255 55.447 5.123
bond 16c 28.356 8.074 18.739 15.157
I 8b 45.834 3.876 44.180 20.563 70.812 22.665 79.211 31.504 98.356 42.614
κt 2.456 11.926 18.339 27.797 41.917
κ0 2.330 11.977 19.275 29.406 39.531
Bt 407.210 83.853 54.528 35.976 23.857
B0 429.240 83.492 51.882 34.006 25.297

non-diamond phase

type Wyckoff C: fΩ κΩ Wyckoff Sn: fΩ κΩ Wyckoff Pb: fΩ κΩ

nuc. 2b 0.043 0.013 4a 0.127 0.002 4a 0.234 0.012
nuc. 2c 0.043 0.013
core 4b 5.761 0.853 32f 2.535 0.149
core 16h 2.741 0.183
val. 6h 14.861 1.926 8c 20.806 9.149
val. 6h 14.874 1.936
I 4f 70.146 4.461 16g 70.384 28.597 8c 36.127 28.784
I 4b 61.246 24.185
κt 3.704 22.085 25.215
κ0 3.662 20.660 28.226
Bt 270.000 45.280 39.659
B0 273.070 48.403 35.429

a The bulk moduli are given in GPa. The topological κt and Bt values are obtained using eq 21. The values of κ0 and B0 are obtained from
the total cell energy and volume according to eq 20. The difference between Bt and B0 is consequence of small errors in the determination
of the basin volumes.
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to understand the organization and qualitative importance
of the topological features of L(r).

The electron density Laplacian provides a perspective that
complements and is not directly available from the electron
density. This is clearly observed in the group IV diamond
phases. Whereas all, C to Pb, elements show identical
topology for F(r), the analysis of L(r) evidence deep
differences between the three groups formed by C and Si
(the covalent group), Ge and Sn (the semilocal group), and
Pb (the most delocalized one). This difference between the
elements is transferred to other phases, showing the dominant
influence of the nature of the element on L(r), rather than
the effect of the crystal geometry, more akin to influence
the F(r) topology.

Our topological methodology is mature enough for ap-
plication to general crystals. Further work should now be
directed to examine the F(r) and L(r) topologies in a diverse
set of crystal types with an objective pointed toward solving
some of the puzzles observed on group IV crystals. In
particular, the role of interstitial regions and the contrast
between the Lewis model and the real electron population
on each basin.
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1997, 101, 2178–2184.

(80) Aray, Y.; Rodrı́guez, J.; Vega, D. J. Phys. Chem. B 2000,
104, 5225–5231.

(81) Aray, Y.; Rodrı́guez, J.; Vega, D.; Coll, S.; Rodrguez Arias,
E. N.; Rosillo, F. J. Phys. Chem. B 2002, 106, 13242–13249.

(82) Aray, Y.; Vega, D.; Rodrı́guez, J.; Vidal, A. B.; Grillo, M. E.;
Coll, S. J. Phys. Chem. B 2009, 113, 3058–3070.

(83) Luana, V.; Mori-Sánchez, P.; Costales, A.; Blanco, M. A.;
Martn Pendás, A. J. Chem. Phys. 2003, 119, 6341–6350.

(84) Pendás, A. M.; Costales, A.; Blanco, M. A.; Recio, J. M.;
Luaña, V. Phys. ReV. B. 2000, 62, 13970–13978.

(85) Recio, J. M.; Franco, R.; Pendás, A. M.; Blanco, M. A.; Pueyo,
L.; Pandey, R. Phys. ReV. B 2001, 63, 184101-1–7.

(86) Contreras-Garcı́a, J.; Mori-Sánchez, P.; Silvi, B.; Recio, J. M.
J. Chem. Theory Comput. 2009, 5, 2108–2114.

CT100269E

Electron Density Laplacian J. Chem. Theory Comput., Vol. 6, No. 12, 2010 3779



Computational Studies on Polarization Effects and
Selectivity in K+ Channels

Christopher J. R. Illingworth, Simone Furini, and Carmen Domene*

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, UniVersity
of Oxford, Oxford OX1 3QZ, United Kingdom

Received May 26, 2010

Abstract: Umbrella sampling in combination with a polarizable QM/MM model have been used
to study the role of electrostatics and polarization in the translocation and selectivity properties
of two K+ channels, KcsA and KirBac, with ions traversing the channel according to an
ion-water-ion mechanism. Analysis of electrostatic interaction energies shows an increased
electrostatic gradient within the KirBac channel relative to KcsA. Quantitative measurements of
polarization effects induced by ions and water molecules in the channel suggest a decreased
interaction with K+ and Rb+ close the S2 binding site. This effect cannot be explained solely by
the geometry of the polarizable region, or by conformational changes in the filter, but appears
to be due to the polarization of the valine residue of the TVGYG selectivity filter motif. We observe
that the presence of an ion in the S2 site, and the absence of an ion at the S3 site, where there
is a water molecule instead, depolarizes valine and, hence, decreases the interaction energy
between that residue and the ion in S2. Our results suggest that the incorporation of polarization
effects can make an observable difference to the potential experienced by an ion in the channel.

Introduction

Potassium channels have an essential role in controlling the
electric potential across cell membranes, making a vital
contribution to the functioning of neurons and cardiac muscle
cells, among others. An important landmark in the under-
standing of these proteins was the first derivation by
crystallography of the 3D structure of a potassium channel,
namely KcsA,1 followed by other potassium channel struc-
tures, including that of the inwardly rectifying channel
KirBac1.1.2

These two channels share many structural features. Each
channel is a tetramer, composed of identical subunits, and
contains the TVGYG sequence motif characteristic of
potassium channels3 (Figure 1a). This sequence motif is
called the selectivity filter, and it allows for the fast diffusion
of K+ ions, occurring at a rate approaching 108 ions per
second,4 while providing a very strong selectivity for K+

over Na+. Experimental studies measuring the conductance
of the KcsA channel under symmetrical solution conditions

show a more moderate preference for K+ over Rb+, such
that the rates of diffusion can be represented as K+ > Rb+

. Na+ 5. Crystallographic studies have shown that within
the selectivity filter, K+ ions are coordinated by the backbone
carboxyl groups of the protein, binding in five locations.6

These binding sites are often denoted S0 to S4, the number
increasing with distance into the intracellular region.

Two challenges in modeling potassium channels have been
noted in the literature. First, the average time required for
the permeation of an ion is long relative to the time scales
typically employed for classical molecular dynamics (MD)
simulations. This has led to the use of a range of techniques
in order to obtain information about the selectivity and the
ion permeation, including umbrella sampling,7,45 steered
molecular dynamics,8 free energy perturbation,9 or metady-
namics.10 Second, studies of K+ and other ion channels have
highlighted the potential importance of polarization effects
in systems of this nature,11 and the limitations in using
common classical force fields where these effects are often
neglected. One solution to this question, followed to an extent
in this paper, is the use of quantum mechanical methods to
model the ions and the selectivity filter.12 For example, ab
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initio geometry optimizations have been used to model
protein-ion interactions at the ends of the selectivity filter,13

and the intracellular entrance of the KcsA channel.14 Current
technology allows for systems of over 400 atoms to be
modeled in this way, for example, in demonstrating the role
of water in the protein cavity in selectivity between K+, Na+,
and other ions.15 In a popular approach to studies of
selectivity, ab initio calculations are carried out in this

manner on a representative structure of either a single binding
site13,16 or another region in the channel,14,15 containing a
single K+ or Na+ ion. A second approach that has been taken
to quantum mechanical modeling employs snapshots of the
entire channel from classical molecular dynamics trajectories,
using them as a basis for single-point quantum mechanics
calculations. Applied to models of the selectivity filter, this
has been used in conjunction with the Merz-Kollman
method of assigning partial charges to highlight the short-
comings of standard classical force field methods, in that
the atomic partial charges derived for residues in the
selectivity filter part of KcsA differ markedly from those
used in classical methods.17 Classical MD simulations have
also been used to generate starting points for integrated
Quantum Mechanics/Molecular Mechanics (QM/MM) dy-
namics, for example, in the application of Car-Parrinello
molecular dynamics to KcsA.12,18 In this model, close to
100 atoms are included in a QM region at the center of a
classically modeled protein, a few picoseconds of Car-
Parrinello dynamics are obtained via a QM/MM method, and
Wannier function centers are calculated to evaluate the
polarization in the channel.

Quantum mechanical models offer advantages over clas-
sical models, avoiding issues of parametrization.12 However,
they require significant amounts of computational time and,
so far as dynamics is concerned, do not allow for simulations
of a length sufficient to model the transport of ions in K+

channels.
A promising approach to the modeling of polarization in

protein systems is found in the number of methods that have
been proposed in which polarization is incorporated into a
classical system, or into the classical part of a QM/MM
framework.19 An example of this approach is the Moving
Domain-QM/MM method.20 In this method, a series of
ONIOM (Our own N-layered Integrated molecular Orbital
+ Molecular mechanics)21 calculations are carried out, with
different residues placed in the high level system in each
calculation. This is applied in an iterative fashion to modify
the charges in the classical low-level system, representing
the effect of polarization. Applied to residues from a portion
of the KcsA channel, this method gives good agreement with
ab initio calculations in the electrostatic potential of an ion
moving along the filter.

Electrostatic and geometrical properties have each been
suggested as important factors in ion selectivity.22 The
hypothesis that K+ prefers to occupy higher coordination
states than Na+, making it more suited to the 8-fold
coordination state observed in K+ channels, has been a source
of debate. MD simulation of K+ and Na+ complexes in
aqueous solution suggested K+ to prefer an 8-fold coordina-
tion,23 while ab initio studies suggested a common preferred
4-fold coordination for both K+ and Na+.24 Recently,
application of Car-Parrinello molecular dynamics suggested
an increased preferred coordination number for K+ compared
to that of Na+,25 indicating that coordination number is
indeed an important factor in selectivity.

A second geometrical hypothesis is the snug-fit theory,
which suggests that passage through the channel of the
smaller Na+ ion requires a distortion in the filter residues,

Figure 1. (a) Representation of the selectivity filter of KcsA.
Just two of the four chains of the protein are shown for
simplicity. The selectivity motif TVGYG is shown in licorice
representation, colored by atomic type. Charged residues in
the protein are shown in licorice representation, colored by
charge, with positively charged residues in blue and negatively
charged residues in red. The remainder of the protein is drawn
in cartoon representation. The ion-water-ion-water pattern
can be seen in the channel in VM representation, with water
molecules and ions labeled according to binding site. (b)
Representation of the model system in KcsA. Just two of the
four chains of the protein are shown. Atoms in the QM region
are shown in VDW representation. Atoms in the polarizable
MM region are shown in licorice representation. Protein atoms
inthenonpolarizableMMregionareshownin linerepresentation.
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the energetic cost of which mitigates against ion conduc-
tion.26 Although MD simulations have shown considerable
flexibility in the selectivity filter, of a magnitude greater than
the difference in size between the Na+ and K+ ions,10,27

isothermal titration calorimetry methods suggest that the size
of the ion is indeed of importance.28

Electrostatic effects have also been proposed as a mech-
anism for selectivity.29 In a recent work on selectivity,30

using small models of the selectivity filter of KcsA and that
of the nonselective NaK channel, the authors propose that
the pore’s selectivity for K+ over Na+ increases with an
increasing hydration number of K+ relative to that of Na+,
increasing number of K+ or Na+-coordinating dipoles, and
decreasing magnitude of the coordinating dipoles provided
by the pore.

Therefore, the conclusions emerging from all of these
studies are that ion selectivity is achieved by a combination
of several factors, not exclusively structural or energetic,
involving both the ion and the ion-coordinating ligands, either
water or protein, the dehydration penalty of the permeating
cations, the electrostatic interactions, and redistribution of
charge between the cation and the channel dipoles, the
architecture of the ion binding site, and the pore size and
flexibility.

Polarization effects have often been suggested as being
of importance in K+ channels.11,31 However, they have not
often been included in computational models of these
systems. Therefore, the aim of this work is to establish the
potential importance of polarization effects in selectivity and
translocation.

In our model, umbrella sampling is used to generate
representative sets of structures simulating the passage of
Na+, K+, and Rb+ through each of the channels. These sets
are then used as a basis for QM/MM calculations. In contrast
to methods described in the literature in which ions are
displaced along a fixed selectivity filter,17a here fluctuations
of the protein in response to different positions of the ions
are allowed. Representing the ions as QM entities removes
concerns which have been raised about the parametrization
of ions within a classical framework.11c Although the QM/
MM method applied here does not allow for charge transfer
between the QM ions and waters, and the MM channel, it
allows for calculations on the whole protein to be carried
out in a feasible amount of time and has the advantage of
allowing the calculation of a discrete polarization energy for
an ion. In this manner, we aim to derive a comparison
between the KirBac and KcsA channels and to evaluate the
effect of polarization in these systems.

Materials and Methods

Model Definitions. The atomic structures of KcsA and
KirBac were based on the protein data bank entries 1K4C32

and 1P7B,33 respectively. Only the transmembrane pore
regions were included in the channel models, i.e., amino acids
A23-G123 for KcsA and amino acids A40-R151 for
KirBac. N termini were acetylated, and an N-methylamide
group was added to the C termini. The amino acid E71 of
KcsA was modeled in the protonated state,34 to form a diacid

hydrogen bond with D80. The analogous residue in KirBac
(E106) was also modeled in the protonated state. Default
ionization states were used for the remaining amino acids.
Four water molecules were placed at the back of the
selectivity filter, in agreement with crystallographic data and
previous MD simulations. The channels were embedded in
a pre-equilibrated lipid bilayer of 256 1-palmitoyl,2-oleoyl-
sn-glycero-3-phosphocholine (POPC) molecules. The channel
axis was aligned to the bilayer normal, and the extracellular
aromatic belt (amino acids Y45 in KcsA and amino acids
Y82 in KirBac) was aligned to the bilayer surface. Lipid
molecules closer than 1.0 Å to protein atoms were removed.
The atomic systems were solvated using the SolVate plug-in
of VMD,35 and then water molecules within 1.2 Å of protein
and lipid atoms were removed. Ions corresponding to a
concentration of 150 mM of KCl, NaCl, or RbCl were added
to neutralize the systems. For convenience, in comparison,
the residues of the KirBac structure were renumbered to
align the sequence with that of KcsA, such that the residues
in the selectivity filter motif TVGYG had residue numbers
75-79. This convention is maintained throughout the
remaining sections of this paper.

Molecular Dynamics Simulations. The KcsA and KirBac
system models were validated by MD simulations. The same
protocol was used for all of the models. Harmonic restraints
with a force constant of 20 kcal mol-1 Å-2 were applied to
the protein backbone atoms in the first 500 ps. Then, 20 ns
of unrestrained dynamics were performed. The CHARMM27
force field was used for lipids and with CMAP correction36

for proteins, together with TIP3P model for water mol-
ecules.37 Parameters for ions inside the selectivity filter were
selected according to ref 11c, while default CHARMM
parameters were used for ions in bulk solution. The particle
mesh Ewald algorithm was used to treat the electrostatic
interactions.38 van der Waals forces were smoothly switched
off at 10-12 Å. Bonds with hydrogen atoms were restrained
by the SETTLE algorithm,39 in order to use a 2 fs time step.
The multi-time-step algorithm r-RESPA40 was used to
integrate the equation of motion. Nonbonded short-range
forces were computed every time step, while electrostatic
forces were updated every two time steps. MD simulations
were performed in the NPT ensemble. Pressure was kept at
1 atm by the Nose-Hoover Langevin piston method,41 with
a damping time constant of 100 fs and a period of 200 fs.
The temperature was kept at 300 K by coupling to a
Langevin thermostat, with a damping coefficient of 5 ps-1.
Calculations were performed using version 2.6 of NAMD.42

A common assumption dating back to early structural work,43

adopted in many computational studies,7,22a,44 is that ions
traverse the channel in an ion-water-ion-water fashion.
While the potential existence of other permeation pathways
has been suggested elsewhere,45 the ion-water-ion-water
pattern was here chosen as the basis for simulation.

Umbrella Sampling Simulations. To obtain representa-
tive structures of the selectivity filter with ions at all positions
along it, umbrella sampling simulations were carried out.
The four ions involved in the conduction process were named
I1 (outermost ion, extracellular side) to I4 (innermost ion,
intracellular side). Three independent biasing potentials were

3782 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Illingworth et al.



applied in order to control the positions along the channel
axis. The center of the biasing potential acting on I4 moved
from the intracellular cavity to the binding site S4, while
the biasing potential acting on I1 moved from the binding
site S0 to the extracellular milieu. The position along the
axis of I2 and I3 was controlled by a harmonic potential
acting on the center of mass of the pair, with the center of
the biasing potential acting moving from a situation with
ions at the binding site S4 and S2 to a situation with ions at
binding sites S2 and S0. Harmonic potentials were updated
in 0.5 Å steps. The force constant of the harmonic potentials
was set to 20 kcal mol-1 Å-2. Over 400 windows were run
of 120 ps each, representing a total of 48 ns of simulation
time to achieve convergence. The first 20 ps of each window
were discarded as an equilibration period.

For the structures including Na+, four sets of umbrella
sampling simulations were run, with the Na+ ion taking the
place of one of the K+ ions in the filter, respectively I1-I4
in the four sets. Thus, a total of 12 sets of umbrella sampling
simulations were run, representing KirBac and KcsA with
four K+ ions, with four Rb+, and with the various orderings
of three K+ and one Na+ ion.

The last frame of each umbrella sampling calculation was
used as an input to a QM/MM calculation in which induced
charges were used to model polarization in the filter region.
In this way, a comprehensive picture of the passage of ions
through each of the two channels has been generated.

QM/MM Calculations. Modeling of electrostatics and,
more specifically, polarization in the channel was carried out
using a variant of an induced charge method,46 adapted for
modeling larger (more than 1000 atom) systems. Here, the
QM region was defined as the four ions in the channel, in
addition to the three water molecules closest to the filter,
the waters being identified according to the minimum
atom-atom distance between a water molecule and either
of the middle two ions in the filter. In a previous application
of the induced charge model, an enzyme-substrate system
was defined in two regions, with a QM ligand surrounded
by a few chosen residues of the protein represented as
polarizable MM entities.47 Here, however, the entirety of
the protein structure was included, with a polarizable MM
region set within a fixed-charge MM representation of the
protein. Polarization effects are short-range in nature, and
calculations on a charged ligand in explicit aqueous solvent47

showed more than 75% of the polarization energy being
captured by a 5 Å cutoff. Here, the cutoff was defined such
that all residues with at least one atom within 9 Å of one of
the middle two filter ions in at least one of the structures
generated by the umbrella sampling was included in the
polarizable MM region. An example of the model system is
shown in Figure 1b. More details of the residues included
in each case are contained within the Supporting Information.
Initial charges for the MM region were taken from the
CHARMM force field, as used in the umbrella sampling
calculations.

Two simplifications of the induced charge model, ap-
propriate to the study of a large protein system, were made.
In small molecule systems, incorporation of polarization due
to the interaction between classical parts of the system led

to QM-MM interaction energies closer to those in which
the MM system was represented by QM-derived charges.
Here, in order to isolate polarization effects caused by the
movement of ions, and in common with earlier applications
of the method to protein-ligand systems,48 this classical-
classical term was omitted. Second, whereas in earlier work
four or five iterations of the induced charge method were
applied, the vast majority of the change in charges is captured
by the first iteration, and as such, only a single iteration was
applied here.

Following the induced charge model, polarization was
modeled using a series of QM/MM calculations. First, a
single-point calculation was carried out on the QM atoms,
described above, in the presence of the protein, modeled as
a set of point charges without polarization. Second, polariza-
tion was incorporated into the charges of atoms in the
polarizable MM region. The electrostatic field of the QM
region of the system, calculated in the presence of the MM
charges using Gaussian 03,49 was represented as a set of
atom-centered multipole series, generated using the GDMA
software package.50 These were used to calculate induced
multipole series on the polarizable MM atomic centers, which
were then converted into modified point charges using the
mulfit software package.51 Under this process, the overall
charge on each molecule within the MM system is conserved.
Finally, another single-point calculation was carried out on
the QM atoms in the presence of the protein, this time with
polarization incorporated into the point charges. Comparing
the result of this calculation with the result of the original
single-point calculation gave a measure of the polarization
energy. In this manner, two key values were calculated, the
electrostatic interaction energy between a QM water or ion
and the unpolarized channel and the polarization energy,
equal to the change in the interaction energy with the addition
of polarization to the polarizable region of the channel.

All QM calculations were carried out at the HF/LANL2DZ
level, and some representative sets were repeated at the
B3LYP/LANL2DZ and MP2/LANL2DZ levels of theory for
KcsA for comparison. The LANL2DZ basis set was chosen
as being roughly equivalent in quality to the 6-31G* basis
set, while having been parametrized for Na+, K+, and Rb+.

Ion Position Definitions. In order to compare energies
from different snapshots, it was necessary to obtain a
definitive measure of the position of the ions in the channel.
Use of a straightforward z coordinate is potentially mislead-
ing, due to changes in the internal structure of the channel
with changes of ion position, even following alignment of
the residues in this region. Therefore, an alternative coor-
dinate, referred to as the relative channel coordinate (RCC),
was defined, expressing the ion position in relation to the
protein binding sites S0 to S4. Details are presented in the
Supporting Information.

Theoretical Basis. For each of the structures on which
calculations were performed, if the set of QM atoms is
labeled A, then the electrostatic interaction energy of the
atoms in A with the channel, Ees(A) was calculated as the
change in the energy of the QM atoms resulting from
the interaction with the unpolarized channel:
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where EQMMM1(A) is the total energy of the initial QM/MM
system, EQM(A) is the energy of the QM atoms without the
surrounding MM atoms, and Epc1 is the self-energy of the
initial point charges in the MM region. The total polarization
energy Epol(A) was calculated as the difference between the
energies of interaction, calculated as above, for the polarized
and unpolarized channel:

where EQMMM2(A) is the total energy of the polarized QM/
MM system and Epc2 is the self-energy of the polarized point
charges in the MM region. That is, Epol(A) is the difference
in the energy of interaction made by the inclusion of
polarization into the MM region. Note that point charges of
MM atoms outside of the polarizable region were kept
constant.

In order to understand the behavior of ions and water
molecules passing through the channel, it was necessary to
calculate energies of interaction for individual molecules in
the QM region. The interaction energy of a molecule was
calculated by performing QM/MM calculations on a system
in which that molecule was omitted. For any molecule m,
the electrostatic interaction energy Ees(m) of that molecule
with the rest of the system was defined as

where Am is the set of QM atoms excluding molecule m
and Ees(Am) is calculated according to eq 1.

Applied to an ion, this energy is equal to the sum of the
electrostatic energies of interaction between the ion and the
other ions and QM waters, and that between the ion and
the channel itself. In order to derive the interaction energy
of an ion or water molecule with the channel excluding
ion-ion effects, the QM-QM interaction energy EQM(m)
was defined as the in Vacuo interaction of a molecule in the
QM region with the rest of the QM region and was subtracted
from the total interaction energy Ees(m) (defined in eq 3).
The interaction energy of a molecule m with the channel is
thus

Similarly, the polarization energy between the molecule m
with the channel, Epol(m), was defined as

where Epol(Am) was calculated according to eq 2.
By the separation of individual energies of interaction

outlined above, and the consideration of multiple structures
with multiple ion and water positions relative to the channel,
it is possible to obtain an interaction energy profile describing
the passage of ions through the channel. Energy values for
ions and waters were averaged over bins of RCC length 0.1
in order to calculate this. It is important to note that this
interaction energy profile describes the energy of interaction
between the ions and the channel. Effects such as desolvation
are omitted in order to isolate terms arising from the

interaction of the ions and the channel. These interaction
energies should not be confused with free energy differences.

Calculations for the KcsA channel with K+ ions were
repeated using the B3LYP/LANL2DZ and MP2/LANL2DZ
levels of theory, generating electrostatic interaction and
polarization energy profiles for ions moving through the
channel. The electrostatic interaction in each case was
virtually identical to that found at the HF level of theory.
The overall shape of the polarization energy profiles was
preserved.

By means of similar calculations, it was possible to carry
out residue-by-residue decompositions of the electrostatic and
polarization energies. The electrostatic interaction between
a QM molecule and a residue within the protein was
calculated as described in eq 3, with the MM region
containing only the residue in question. This method was
used to measure the contributions of different residues to
selectivity in the S2 site, the S2 binding site exhibiting the
maximal selectivity between Na+ and K+ ions.16a The
polarization energy of interaction between a QM molecule
and a residue within the protein was similarly calculated as
described in eq 5, with the MM region only containing the
residue in question. For polarization calculations, the polar-
ized charges for the residue were taken from the polarized
charges generated for the entire QM/MM system. Note that
due to the symmetry of the system, when a single residue is
considered, this in fact corresponds to four identical amino
acids, one from each of the identical protein chains.

Modeling polarization in this way is complicated by the
fact that the polarizable region is finite and undergoes small
geometrical changes between snapshots, and by the fact that
ions move relative to this region. As the polarization energy
is dependent on the region over which it is measured, this
leads to an inherent variation in the calculated polarization
energy as an ion moves through the polarizable region. In
order to model the effect of these relative changes in
geometry on the polarization energy, a geometrical factor
was calculated, giving an indication of the expected polariza-
tion energy at each ion position relative to the channel.
Modeling the ion, i, as a unit charge and placing unit dipoles
at each of the atoms j in the polarizable region gave the sum
of charge-dipole interactions:

where rij is the distance between i and j. This factor gave a
reference against which calculated polarization energies could
be compared.

Results

In order to analyze the QM/MM data, results for single ions
were grouped by RCC in bins of width 0.1, equal to a tenth
of the distance between binding sites. Average values of the
electrostatic interactions were calculated for each of the RCC
bins. In addition to a combined energy, representing the
interaction of an ion with the remainder of the system, the
interaction energies with the QM system, and with the pro-
tein, were calculated separately. Figure 2 shows mean

Ees(A) ) EQMMM1(A) - EQM(A) - Epc1 (1)

Epol(A) ) [EQMMM2(A) - EQM(A) - Epc2] - Ees(A) (2)

Ees(m) ) Ees(A) - Ees(Am) (3)

Echannel(m) ) Ees(m) - EQM(m) (4)

Epol(m) ) Epol(A) - Epol(Am) (5)

PG(i) ) ∑
j)1

N
1

rij
2

(6)
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electrostatic interaction energies for K+ ions passing through
the two different channels. Equivalent data for Na+ and Rb+

are given in Supporting Information Figure S1. Each point
in the figure represents a collection of structures. Note that
the energies, representing the interaction of the ion with the
channel, exclude factors such as desolvation and should not
be confused with free energy differences. While the position
of the ion in question is denoted by the RCC, plotted on the
horizontal axis, the remaining three ions can occupy a range
of positions, leading to variations in the energy that are in
general removed by averaging over the snapshots in each
bin.

Absolute electrostatic interaction energies, by contrast to
free energy differences, are large, on the order of hundreds
of kilocalories per mole.52 Examination of the these energies
revealed that Na+ ions have a stronger electrostatic interac-
tion with the channel than do K+ or Rb+. In order to compare
the behaviors of the different ions, mean electrostatic
interaction energies were calculated for ions for which the
RCC was between 1 and 4 (i.e., in the filter region). The
differences between these energies were then corrected,
subtracting the differences between the experimentally
observed desolvation energies of the ions.53 In KcsA, the
corrected mean interaction with K+ was 2.1 kcal/mol greater
than that of Rb+, and 6.5 kcal/mol greater than that for Na+,

while for KirBac, the K+ interaction was 2.0 kcal/mol greater
than that for Rb+, and 12.8 kcal/mol greater than that for
Na+. Accurate characterization of ion selectivity requires the
balancing of many subtle factors and is not easy with either
classical or quantum mechanical approaches. In this case, a
greater level of sampling at the QM/MM level would
inevitably bring a greater degree of accuracy, though the
ordering of energies found here (K+ > Rb+ > Na+) was
consistent with experimental measurements.5

Sets of structures of KcsA and KirBac containing ions with
an RCC equal to 1.0, 2.0, 3.0, or 4.0 were selected, and
average residue-by-residue electrostatic interaction energies
were calculated for ions in each system at each of these
points. Some representative results for these interactions are
shown in Table 1. Unsurprisingly, for both protein systems,
the largest residue differences between ion positions occurred
for residues of the selectivity filter, which comprise the ionic
binding sites. For each system, differences between the
residue electrostatic interaction energies with ions in S1 and
in S4 were summed across all residues, giving an ap-
proximation to the overall difference in binding energies
between ions in S1 and ions in S4. As can be seen in Figure
1, for structures analyzed here, the interaction energy between
the KcsA channel and ions at S4 is slightly stronger than
that at S1, while the interaction energy between KirBac and
ions at S4 is significantly weaker than that at S1. Residue-
by-residue comparison of the sequences, carried out on the
basis of the alignment in ref 33, suggests that a number of
factors contribute to this effect. First, the electrostatic
interaction between the ion in the S1 site and the residues

Figure 2. Averaged electrostatic interaction energies of K+

ions moving through the selectivity filters of (a) KcsA and (b)
KirBac. For each system, the total interaction energy (circles),
the QM-QM interaction energy (triangles), and the ion-protein
interaction energy (stars) are plotted.

Table 1. Mean Electrostatic Interaction Energies for Ions
in Binding Sites S1 to S4 with the Amino Acids of the
TVGYG Motif and Another Residue in KcsA and KirBaca

residue mean interaction energy (kcal/mol)

KcsA KirBac binding site KcsA KirBac

Thr75 Thr75 S1 -2.6 ( 1.4 -4.6 ( 1.2
Thr75 Thr75 S2 -15.6 ( 4.9 -15.8 ( 3.5
Thr75 Thr75 S3 -58.9 ( 6.5 -59.3 ( 4.5
Thr75 Thr75 S4 -109.5 ( 8.0 -101.9 ( 10.9
Val76 Val76 S1 -16.3 ( 5.1 -22.3 ( 1.4
Val76 Val76 S2 -43.0 ( 7.3 -55.8 ( 8.0
Val76 Val76 S3 -36.9 ( 7.9 -47.0 ( 5.3
Val76 Val76 S4 -10.8 ( 2.6 -14.2 ( 2.0
Gly77 Gly77 S1 -62.7 ( 3.6 -58.1 ( 4.8
Gly77 Gly77 S2 -64.9 ( 4.6 -59.6 ( 3.7
Gly77 Gly77 S3 -23.3 ( 3.9 -19.1 ( 2.3
Gly77 Gly77 S4 -6.5 ( 1.1 -7.2 ( 1.3
Tyr78 Tyr78 S1 -27.0 ( 7.2 -45.4 ( 3.9
Tyr78 Tyr78 S2 -4.9 ( 1.9 -8.5 ( 2.9
Tyr78 Tyr78 S3 -2.6 ( 1.2 -5.1 ( 1.2
Tyr78 Tyr78 S4 0.5 ( 0.7 -0.9 ( 0.9
Gly79 Gly79 S1 -0.4 ( 1.4 -6.9 ( 2.6
Gly79 Gly79 S2 4.4 ( 1.1 2.5 ( 2.2
Gly79 Gly79 S3 3.9 ( 0.6 2.3 ( 0.8
Gly79 Gly79 S4 3.3 ( 0.2 2.7 ( 0.7
Arg52 Ala52 S1 49.6 ( 0.7 0.2 ( 0.1
Arg52 Ala52 S2 48.1 ( 0.6 0.1 ( 0.2
Arg52 Ala52 S3 46.2 ( 0.6 -0.2 ( 0.1
Arg52 Ala52 S4 44.0 ( 0.5 -0.3 ( 0.1

a Each energy value is calculated from a representative set of
structures; the standard deviation gives a measure of the
variability of the energy in each case. Interaction energies making
the largest contributions to the electrostatic interaction with ions in
different sites are highlighted in bold.
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Y78 and G79 is significantly stronger in KirBac than in KcsA
(as mentioned earlier, for convenience, in comparison, the
residues of the KirBac structure were renumbered to align
the sequence with that of KcsA, such that the residues in
the selectivity filter motif TVGYG had residue numbers
75-79). Second, KcsA and KirBac have a different distribu-
tion of charged and uncharged residues. In both proteins,
charged residues are clustered away from the center of the
cell membrane. However, in the extracellular region, KcsA
contains the positively charged residues R52, R64, and R89,
in addition to the negatively charged residues E51 and D80.
In the intracellular region, KcsA contains the positively
charged R117, R121, R122, and R27 and the negatively
charged residues E118 and E120 (see Figure 1a). No charged
residues occur toward the center of the cell membrane.
Therefore, in KcsA, ions being transported out of the cell
move from a region of the protein with an overall charge of
+8 to a region with an overall charge of +4. In KirBac,
however, the distribution is different. The extracellular region
contains the negatively charged residues D51 and D80, with
E95 slightly buried into the membrane region and E71 in a
neutral protonation state, while the intracellular region
contains the positively charged residues R14, K22, R113,
and R116 and the negatively charged D15. Thus, ions being
transported out of the cell move from a region of the protein
with an overall charge of +12 to a region with an overall
charge of -12. This creates a differing energy gradient which
can be observed in the residue differences. As illustrated in
Table 1, the movement of the positively charged ion away
from, for instance, R52 in KcsA contributes to the favorabil-
ity of S4 over S1, an effect that is not present in the
equivalent neutral residue in KirBac. Electrostatic interaction
energies with ions in the S2 and S3 positions are intermediate
to those for S1 and S4, corresponding to the positions of the
ions relative to these charged residues. While the observed
difference in the interaction energies with charged residues
would be reduced by the internal dielectric constant of the
protein, the sum of the long-range interactions with charged
residues is non-negligible.

Residue-by-residue interactions were also calculated for
structures of KcsA and KirBac containing either a Na+ or
Rb+ ion with RCC equal to 2.0. Results are shown in Table
2. Taking the sum of all of the residue interactions in each
case, Na+ bound more strongly than K+. A larger difference
in binding energy was also observed for Rb+ in KirBac,
although in KcsA, Rb+ bound more strongly in the S2 site
than did K+. In each case, the residues in the TVGYG filter

motif made a substantial contribution to the relative binding
energies of the ions, accounting for between 50 and 98% of
the calculated energy difference.

Average values of the polarization energy were calculated
for each bin in a similar manner to the electrostatic energies
(Figure 3). As already noted, the polarization energy is
dependent on the position of the ion relative to the polarizable
region of the protein, and therefore, it is more difficult to
compare energies at different ion positions. However, this
does not affect the comparison of different ions at identical
positions in the filter, and in this measure, a pattern similar
to that in the electrostatic energies was observed.

Averaged polarization energies were calculated for ions
in the filters of each KcsA and KirBac. No consistent pattern

Table 2. Breakdown of Electrostatic Interaction Energies between Na+, K+, and Rb+ Ions in the S2 Site of KcsA and
KirBaca

KcsA KirBac

Na+ K+ Rb+ Na+ K+ Rb+

sum of residue interactions for all residues (kcal/mol) -113.7 -104.2 -100.7 -335.1 -333.2 -319.2
relative binding energy of ion with all residues, corrected for

desolvation (kcal/mol)
+7.2 0.0 -1.3 +14.8 0.0 +9.3

sum of residue interactions for residues TVGYG (kcal/mol) -135.8 -124.2 -120.1 -139.5 -137.2 -125.8
relative binding energy of ion with residues TVGYG, corrected for

desolvation (kcal/mol)
+5.1 0.0 -0.7 +14.5 0.0 +6.7

a Relative energies are calculated by subtracting experimental values for desolvation from the interaction energies and are given relative
to that for K+.

Figure 3. Averaged polarization energies of K+ ions (blue
squares), Na+ ions (red circles), and Rb+ ions (green
triangles) moving through the selectivity filter of (a) KcsA and
(b) KirBac.
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was observed for the relative polarizations of K+ and Na+.
In KcsA, Na+ had slightly greater polarization energy than
K+, while in KirBac the polarization of Na+ was lower than
that of K+. In each case, the polarization energy of K+ tended
to be stronger than that of Rb+.

An interesting feature of the polarization energy is the
presence of a peak representing low polarization energy at
a relative channel coordinate of around 2, seen for both K+

and Rb+ ions in both KcsA and KirBac. A similar feature is
also observed for Na+ ions, albeit less pronounced and at a
relative channel coordinate slightly greater than 2 in KcsA,
and slightly less than 2 in KirBac. Calculation of expected
polarization energies suggested that this feature is not simply
an artifact of the geometry of the polarizable region. A
comparison of the expected polarization energy with the
measured averaged polarization energies for K+ in KcsA is
shown in Figure 4. A constant term has been added to the
former measure in order to give identical mean values,
thereby aiding comparison of the shapes of the graphs.

The expected values here demonstrate that the movement
of the ions through the polarizable region has a significant

effect on the measured polarization energy. Toward the edges
of the polarizable region, the expected polarization decreases
due to the decrease in polarizable volume in the immediate
vicinity of the ion. This contributes in part to the increase in
the measured polarization energy in the filter region relative
to that in the cavity and external regions. However, the
decreased polarization measured at S2 cannot be explained
by the movement of the ion relative to the polarizable region.

An additional factor considered as a possible source of
lowered polarization energy in the S2 site was the presence
of changes in the conformation of the backbone of the
channel residues. In some of the structures analyzed, flips
in one of the Val76 residues were observed, such that the
carbonyl group of the residue pointed away from the center
of the channel. Flipping of carbonyl ligands is an ordinary
observation in K+ channels, as described in various com-
putational studies for different K+ channels.54 Average
interaction and polarization energies were calculated as above
for a set of structures edited so that these flips did not occur,
and for a randomly edited set of structures, where an identical
number of randomly chosen structures were removed (results
shown in Supporting Information Figure S2). A difference
between the sets was observed close to S2, with an increase
in both the electrostatic interaction energy and the polariza-
tion energy when the flips were removed, likely due to the
interaction with the additional carbonyl group present when
no flip occurs. Despite this increase, however, the overall
character of the polarization energy profile was unaffected.

A residue-by-residue breakdown of polarization energy
was carried out for structures from the umbrella sampling
calculations for KcsA and KirBac with four K+ ions.
Residue-by-residue polarization energies were calculated for
structures containing ions with an RCC of 1.0, 1.6, 1.7, 1.8,
1.9, 2.0, 3.0, or 4.0, thereby providing detail of the polariza-
tion interaction at each binding site. In each case, the vast
majority of the polarization energy was captured by the
interaction of ions with the residues in the TVGYG selectiv-
ity motif, with other residues in the polarizable region
contributing 10% or less of the total polarization energy.
Table 3 shows mean polarization energies for residues in

Table 3. Residue-by-Residue Breakdown of Single Ion Polarization Energies for K+ Ions at Different Locations in the
Selectivity Filter (TVGYG Motif) of KcsA and KirBaca

mean polarization energy (kcal/mol), ion and RCC

K+ K+ K+ K+ K+ K+ K+ K+ Na+ Rb+

residue 1.0 1.6 1.7 1.8 1.9 2.0 3.0 4.0 2.0 2.0

KcsA
T75 -23.6 -34.4 -33.8 -48.2 -62.3 -62.5 -96.2 -197.5 -45.9 -61.2
V76 -53.1 -91.6 -89.8 -81.2 -68.6 -75.9 -122.6 -45.0 -84.3 -69.4
G77 -63.7 -61.2 -65.3 -58.9 -59.6 -60.3 -19.3 -6.8 -82.7 -51.8
Y78 -38.5 -37.9 -33.6 -29.3 -15.3 -17.8 -13.5 0.1 -22.7 -18.0
G79 -56.2 -24.1 -18.4 -17.1 -16.8 -17.7 -15.6 -8.1 2.2 -12.7
total -240.5 -252.6 -248.3 -239.6 -231.8 -242.2 -277.3 -280.5 -266.3 -222.2

KirBac
T75 -26.4 -34.9 -37.9 -42.6 -52.9 -51.3 -94.4 -171.8 -33.2 -56.3
V76 -73.9 -98.8 -98.9 -105.9 -97.4 -101.2 -146.9 -72.1 -87.7 -86.5
G77 -58.9 -68.8 -66.2 -54.8 -52.3 -65.5 -15.9 -9.2 -79.0 -50.6
Y78 -93.5 -60.0 -45.9 -40.1 -32.2 -17.9 -21.1 0.4 -51.9 -25.9
G79 1.2 1.9 5.3 3.7 7.7 -4.5 -0.4 -1.0 0.5 -1.3
Total -244.8 -252.9 -239.7 -237.9 -226.2 -238.2 -276.2 -254.9 -245.9 -218.9

a Values for Na+ and Rb+ are given for the center of the S2 binding site, this site exhibiting the maximal selectivity between ions.

Figure 4. Measured (circles) and expected (stars) polariza-
tion energies of K+ ions moving through the KcsA selectivity
filter. Linear scaling has been applied to the latter measure
in order to give identical mean values, thereby aiding com-
parison of the shapes of the graphs.
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the selectivity filter, in structures containing ions with specific
relative channel coordinates.

Certain patterns can be observed in the residue-by-residue
polarization energy data. For example, in KcsA, the polariza-
tion energy due to the residue T75 steadily increases in
magnitude as the RCC of a K+ ion increases from 1.0 to
4.0, this effect being easily explained by the increasing
proximity of the ion to this residue as the RCC increases.
Simultaneously, the components of the polarization energy
due to the interactions with Y78 and G79 exhibit a constant
decrease in magnitude with increasing RCC, as the distance
between the ion and these residues increases. The polarization
energy due to the interactions with V76 and G77 are more
complex. As might be expected, the interaction with V76
achieves its greatest value when an ion has a RCC of 3.0, in
which case the carboxyl group of the residue is directly
involved in binding the ion. However, when the RCC of the
ion is increased from 1.6 to 2.0, moving toward this residue,
there is a decrease in the magnitude of the polarization
interaction. Figure 5 shows the mean changes in charge with
polarization in the T75 and V76 residues for structures of
KcsA containing a K+ ion with an RCC of either 1.6 or 2.0
(details for other residues given in Supporting Information
Figures S4 and S5). Changes in charge have been averaged
over the four copies, one per chain, of each residue. In
general, the magnitude of the changes in the atom charges
reflects
the magnitude of the polarization energies recorded in Table
3. For example, the polarization energy captured by the T75
residue increases in magnitude as the RCC of the ion
increases from 1.6 to 2.0. Corresponding with this movement,
the change in the charge of the R carbon atom of this residue
also increases in magnitude, from -0.15 to -0.29. Examina-
tion of the charges in the V76 residue shows that at each
ion position, the polarization increases the magnitude of the
negative charge on the carbonyl oxygen, as would be
expected for an interaction with a set of positively charged
ions. However, as the ion moves closer to this carbonyl
group, its RCC increasing from 1.6 to 2.0, the amount of
polarization decreases, a surprising result. Some explana-
tion for this can be seen in Figure 6, which shows the
distribution of the RCC of the ion adjacent to that with
an RCC between 1.6 and 2.0, moving into the cell. For
the purposes of the figure, the RCC of the second ion is
rounded to the nearest integer value. When the first ion is
located further into the channel, its RCC increasing from
1.6 to 2.0, the location of this next ion also changes so
that the RCC of this second ion is 4 or above in all of the
observed structures. Hence, the increase in the RCC of
an ion from 1.6 to 2.0 is associated with a second ion
leaving the S3 binding site, away from the carbonyl
oxygen of the V76 residue. This decreases the polarization
of this residue, lowering the energy of polarization
between V76 and the ion further up the channel. Hence,
binding of an ion in the S2 binding site is affected by
polarization effects that result from the interaction with
other ions further into the channel. Repeat calculations
performed for a single Na+, K+, or Rb+ ion moving
through KcsA or KirBac, for which the other binding sites

were occupied by water molecules, did not show the same
effect at S2.

In KirBac, patterns broadly similar to those seen in KcsA
can be observed, with differences in the polarization interac-
tions of V76 and G77 leading to a drop in the magnitude of
polarization at S2 as the RCC of a K+ ion increases from
1.6 to 2.0. Analysis of changes in charges again showed a
decrease in the magnitude of polarization of the carbonyl
oxygen of V76 occurring as a result of this movement. As
with KcsA, this can be associated with interactions taking
place further down the channel. A difference between KcsA
and KirBac occurs in residues Y78 and G79. In KcsA, the

Figure 5. Mean atomic charges in the (a) T75 and (b) V76
residues of KcsA before and after polarization of the channel
in structures. Charges are given for the unpolarized system
(top), and for structures with K+ ions at RCC values of 1.6
(middle number) and 2.0 (bottom number). Changes are
averaged over the atoms in the four V76 residues in each
case.
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polarization of these residues is split between the two
residues, while in KirBac, it is concentrated in changes in
the charges of the tyrosine residue.

Electrostatic interaction and polarization energies calcu-
lated for water molecules in the channels were much smaller
in magnitude than those calculated for the ions.

Discussion and Conclusions

By means of a series of umbrella sampling calculations, we
have obtained a complete set of structures of Na+, K+, and
Rb+ ions passing through the KcsA and KirBac selectivity
filters. The umbrella sampling method provides a representa-
tive set of sample structures for the QM/MM calculations
with a number of advantageous properties. First, ions can
be located in a range of different places within the filter
region, not being constrained to the positions of lowest
energy. Second, the freedom of the ions to move relative to
each other allows for the sampling of a range of different
ion configurations given that one ion is in a specific point in
the channel. Third, throughout the simulations, the protein
is unfixed, allowing for the channel to respond to the
movements of the ions.

Whereas, in some previous work, QM calculations have
been carried out on some averaged channel structures17a or
by running dynamics calculations from a small number of
starting structures,12 we have extended the induced charge
method of polarization to carry out polarizable QM/MM
calculations on a complete representative set of classically
generated structures. The use of quantum mechanical meth-
ods has the advantage of avoiding questions of parametriza-

tion of ions, while the incorporation of polarization into a
classical force field has the advantage of allowing for the
calculation of electrostatics and polarization in a large
number of structures in a reasonable amount of time.
Although our QM/MM methodology does not incorporate
charge transfer, potentially leading to a slight inflation in
the interaction energies with the selectivity filter, we do not
anticipate that this omission would alter the fundamental
nature of the results obtained.

Energetic calculations carried out in a QM/MM framework
showed mean binding energies consistent with those observed
experimentally, with a slight preference in binding for K+

over Rb+, and a more significant difference between K+ and
Na+. Comparison of the electrostatic interaction energies for
KirBac and KcsA highlight the existence of an electrostatic
gradient in the KirBac filter not present in KcsA, with a
significantly higher energy for an ion in the S4 binding site
than in the S1 binding site. Two factors are presented in
explanation of this: first, an energy contribution resulting
from the residues of the TVGYG selectivity motif and,
second, a distribution of charged residues in the intra- and
extra-cellular regions of KirBac disfavoring to an extent the
passage of ions from S1 to S4. The second of these carries
the implication that residues relatively far from the selectivity
filter can affect the electrostatic energies of K+ and Rb+

ions moving through it. Changes in the electrostatic energy
may modify the conductance properties of the channels.
Thus, the conductance variability observed in the K+ channel
family may partially be explained by an electrostatic effect
of nonconserved residues surrounding the selectivity filter.

Calculations of the polarization energy of each ion were
made using a QM/MM induced charge method applied to a
classical representation of the protein. Modeled in this way,
polarization was observed to be a short-range effect, with
90% or more of the polarization energy caused by the ions
being captured by the residues in the TVGYG filter motif.
As noted in the electrostatic interaction energies calculated
above, calculations that neglect polarization can recreate
certain experimentally observed characteristics of the chan-
nel, for example, the K+/Na+ selectivity. However, calcula-
tions of polarization energy indicate that polarization plays
a nontrivial role in the energetics of ion diffusion, with
structural features of the channel influencing the binding
energy. Notably, we observed a reduction in the magnitude
of the polarization energy in the S2 binding site, this pattern
being repeated for KirBac and KcsA with K+ and Rb+ ions,
and in a less consistent way for Na+. This effect, at least in
part, appears to be due to the influence of a second ion
polarizing the V76 residue, affecting the interaction energy
of the ion near S2. This has potential implications for the
modeling of these systems. While substantial progress toward
understanding the mechanism of K+ channels has been made
through single-ion, single-binding site models of the selectiv-
ity filter, by modeling multiple ion positions and including
polarization effects, it has been shown that the interplay
between an ion and a binding site in the channel can be
affected by interactions taking place in other sites in the
channel. In order to derive a fully accurate picture of the
behavior of an ion in one binding site, the behavior of ions

Figure 6. Distribution of the RCC of the next ion into the KcsA
channel, for structures containing an ion with an RCC between
1.6 and 2.0. The RCC of the first ion is given on the horizontal
axis, while the vertical axis shows the distribution of the RCC
of the second ion. The RCC of the second ion is rounded to
the nearest integer and takes values of 3 (dotted shading), 4
(diagonal shading), 5 (hashed shading), or 6 (solid shading).
Inset figures indicate the position of the second ion. As the
RCC of the first ion increases from 1.6 to 2.0, the second ion
leaves the S3 site and moves into S4 or a location further
into the channel.
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in the remainder of the channel should be considered. In
addition, while many excellent studies of free energy
differences in selection and permeation have been carried
out using nonpolarizable classical force fields, the observation
here of multi-ion polarization effects cannot be ignored.
Whether the differences caused by polarization would
translate into energetic or geometrical differences in a fully
polarizable model of dynamics is a question for future
research. However, our results support the consensus of
opinion that polarizable models are of great importance in
modeling ion channel systems.
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Abstract: Biological processes occur on space and time scales that are often unreachable for
fully atomistic simulations. Therefore, simplified or coarse grain (CG) models for the theoretical
study of these systems are frequently used. In this context, the accurate description of solvation
properties remains an important and challenging field. In the present work, we report a new CG
model based on the transient tetrahedral structures observed in pure water. Our representation
lumps approximately 11 WATer molecules into FOUR tetrahedrally interconnected beads, hence
the name WAT FOUR (WT4). Each bead carries a partial charge allowing the model to explicitly
consider long-range electrostatics, generating its own dielectric permittivity and obviating the
shortcomings of a uniform dielectric constant. We obtained a good representation of the aqueous
environment for most biologically relevant temperature conditions in the range from 278 to 328
K. The model is applied to solvate simple CG electrolytes developed in this work (Na+, K+, and
Cl-) and a recently published simplified representation of nucleic acids. In both cases, we
obtained a good resemblance of experimental data and atomistic simulations. In particular, the
solvation structure around DNA, partial charge neutralization by counterions, preference for
sodium over potassium, and ion mediated minor groove narrowing as reported from X-ray
crystallography are well reproduced by the present scheme. The set of parameters presented
here opens the possibility of reaching the multimicroseconds time scale, including explicit
solvation, ionic specificity, and long-range electrostatics, keeping nearly atomistic resolution with
significantly reduced computational cost.

Introduction

Computer simulation of biological systems is continuously
experiencing a tremendous expansion urged by the ever-
growing computer power that allows for the treatment of
always more complex systems and for time scales that
continuously approach biological relevancy.1 Parallel to this,
the greediness to achieve structural and dynamical descrip-
tions of yet longer and bigger sized systems has prompted
the scientific community to develop simplified models of

molecular assemblies that mimic arbitrarily intricate molecular
systems with a lower degree of complexity. These simplified
or coarse grain (CG) representations reduce significantly the
computational demands but still capture the physical essence
of the phenomena under examination.2,3 Starting from the
pioneering simplified models used to describe protein folding,4,5

a huge number of successful applications covering a wide range
of biomolecular and nanotechnologically relevant applications
have been presented.6-18 For an exhaustive review of this
area, the book Coarse-Graining of Condensed Phase and
Biomolecular Systems19 is recommended. In this context, the
accurate treatment of solvent effects is still a challenging
issue. In fact, many CG approaches use a uniform dielectric
constant, which may produce an incorrect partition of
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hydrophilic molecules in a hydrophobic medium. Recently,
elaborated and/or systematic developments of CG models
for simulating water, Hbond (hydrogen bond) bound, and/
or ionic liquids with high accuracy have been presented.20-23

Here, we present a new and simple CG model for water
derived from elementary physicochemical concepts and
fitting the interaction parameters to reproduce some charac-
teristic features of liquid water. The main advantage of our
model is that all of the interactions are described by a typical
Hamiltonian for classical simulations, explicitly including
long-range electrostatics. This model is composed of four
interconnected beads arranged in a tetrahedral conformation
(Figure 1). Each bead carries an explicit partial charge. In
this way, the liquid generates its own dielectric permittivity,
avoiding the use of a constant dielectric medium. The model
achieves a reasonable reproduction of some common proper-
ties of liquid water in the range of temperatures relevant for
most biological applications.

As examples of the potentiality of the model, we study
first the solvation of CG monovalent electrolytes developed
in this work (Na+, K+, and Cl-). Then, we present molecular
dynamics (MD) simulations of a recently published CG
model for DNA.24 This model was shown to provide nearly
atomistic resolution information of the structure and dynam-
ics of double-stranded DNA under the generalized Born
model approach for implicit solvation. In this contribution,
we present an extension of that model for explicit solvation.

We show that this CG scheme is able to reproduce
solvation spines, electrolyte specificity, and cation-driven
narrowing of the minor groove. These examples illustrate
the usefulness of the model in incorporating electrostatic
effects in a physiological medium, keeping the chemical
details of the different ionic species within CG simulations
and overcoming the drawbacks of implicit solvation.

Methods

Description of the Model. The underlying idea of the
model is that, due to its molecular characteristics, pure water
behaves as a structured liquid forming (among other struc-
tural arrangements) transient tetrahedral clusters.25 These
clusters are composed of a central water coordinated by four
identical molecules that form an elementary tetrahedral
arrangement (Figure 1A). In this arrangement, the central
molecule is buried and unable to interact with any other
particle outside of the cluster. Our working hypothesis is
that, owing to the replication of this structure in the bulk,
the central molecule of any tetrahedron can be taken into
account implicitly passing from a highly packed (atomistic)
to a more granular (CG) liquid (Figure 1B). Aimed at
reproducing the structural organization of the liquid, we
generated a molecular topology in which four “covalently
bound” beads are placed on the geometric positions of four
oxygen atoms at the corners of an ideal tetrahedron (hence,
the name WAT-FOUR or WT4 for short). The proposed
topology implies that within an elementary cluster, the Hbond
interactions that hold together the atomistic liquid water are
represented by spring constants linking four beads (Figure
1B). The interactions between elementary clusters are taken

into account by normal vdW and electrostatic terms in the
classical Hamiltonian (Table S1, Supporting Information).
These forces reproduce the overall tetrahedral ordering of
water, allowing the elementary clusters to diffuse freely.

In analogy with the nearly tetrahedral water molecule that
promotes a tetrahedral ordering in the surrounding space, a
WT4 molecule recreates a roughly similar arrangement with
a higher granularity (Figure 1C). Indeed, the structure of a
WT4 molecule is replicated in its neighborhood, leaving
holes that can be regarded as atomistic waters implicitly taken

Figure 1. From atomistic to CG water. (A) Snapshot taken
from a MD simulation showing the typical ordering of bulk
water molecules. Gray molecules represent the liquid bulk.
The structural organization is illustrated with a few opaque,
thick water molecules which occupy the corners of irregular
tetrahedrons. They saturate the Hbond capacity of a (semi-
transparent) molecule located in the center of each tetrahe-
dron. Hbonds are indicated with dashed lines. (B) The
positions of each of the oxygen atoms at the corners of the
tetrahedra in A are now indicated with red beads. The concept
behind the WAT FOUR (WT4) model is that those elementary
tetrahedral clusters can be represented by four harmonically
linked beads. The covalent bonds included in the WT4 model
are represented by dark dashed lines, while intercluster
interactions (vdW and electrostatics) are indicated with light
dashed lines. The model implies that a number of water
molecules are taken into account implicitly (represented as
semitransparent molecules). Notice that water molecules can
be implicitly represented even between noncovalently bound
beads (take, for example, the central water molecule in the
picture). The positions of all of the elements in A and B are
identical. (C) Structural organization of WT4 in the bulk
solution taken from a MD snapshot. The model reproduces
higher-granularity tetrahedral organization in the space through
noncovalent interactions. Red planes evidence the presence
of rough tetrahedrons formed between different WT4 mol-
ecules comprising an implicit water molecule. (D) The ideal
organization of a tetrahedral water cluster leads to the
geometry of WT4. The separation of 0.28 nm between the
water oxygen located at the center of the tetrahedron and its
corners corresponds to the oxygen-oxygen (first neighbor)
distance. This elementary cluster can be mapped to a WT4
molecule (bottom) composed by four harmonically bonded
beads. White and red beads (hydrogen-like, HWT4, and
oxygen-like, OWT4) carry positive and negative partial charges
of 0.41e, respectively.
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into account by the CG scheme. These implicit waters can
be present not only within the four bonded beads but also
between tetrahedrons formed by beads belonging to a
different molecule (Figure 1B and C). This suggests that the
WT4 molecules in the bulk solution have the capacity to
form interactions alike to Hbond networks.

The distance between the central oxygen of a tetrahedral
water cluster (Figure 1D) and any other oxygen is ∼0.28
nm, as determined from diffraction experiments.26 Taking
this into account and the geometry of a perfect tetrahedron,
the equilibrium distance between beads was set to 0.45 nm.
The bond stretching force constant was set to mimic the
interaction energy involved in typical hydrogen bonds. We
tried harmonic constants within a range from 837 kJ/mol
nm2 to 4184 kJ/mol nm2 (2 kcal/mol Å2 to 10 kcal/mol Å2).
A value of 2092 kJ/mol nm2 (5 kcal/mol Å2) was chosen,
as it results in a better fit of different water properties. This
weak link confers the molecule a certain degree of
structural plasticity, resulting in small deviations from a
perfect tetrahedron upon temperature effects. These de-
formations could be identified with the nonperfect tet-
ragonal ordering present in liquid water at room temper-
ature. Given the tetrahedral symmetry, only these two
bonded parameters for intramolecular interactions are
needed (Table 1 and Figure 1D).

Intermolecular nonbonded interactions are ruled by normal
van der Waals and electrostatic parameters, listed in Table
1. Partial charges were assigned considering that the central
water molecule in a given atomistic tetrahedral cluster
neutralizes the atomic charges of the waters in the corners
by Hbond formation. If the water atomic charges are q for
the hydrogen and -2q for the oxygen, this yields two positive
corners with charge q (alike to Hbond acceptors) and two
negative corners with charge -q (alike to Hbond donors,
Figure 1D). The assignment of partial charges is a largely
unsolved issue in classical force fields. In the particular case
of water, this task has been addressed in many different ways,
from adjusting parameters to reproduce experimental quanti-
ties in the liquid or gas phase to ab initio potentials derived
from calculations using small clusters of molecules. How-
ever, no available model is capable of reproducing all of
the water properties with good accuracy. Given the roughness
of our model, we just sought to keep the electrostatic
interactions engaged by CG beads comparable to atomistic
Hbonds. Therefore, we simply tried the same atomic charge

values used in common three-point water models (Table 1).
Among several atomistic three-point water models tried, the
charge distribution that better fit the experimental values was
that of the SPC model.27 The van der Waals radii and well
deepness were used as free parameters. Intramolecular
nonbonded interactions were excluded.

The mass of each bead was assigned to fit the density of
liquid water. To this task, we used a computational box
containing 497 WT4 molecules simulated at 300 K and 1
bar. The mass per bead necessary to match a density close
to 1 g/mL resulted in 50 au. Taking into account that the
mass of each atomistic water molecule is 18 au, it is implied
that each WT4 bead represents ∼2.8 water molecules (50
au/18 au). This corresponds on average to about 11 real
waters per WT4 molecule. Namely, we assume that each
WT4 molecule represents 11 real water molecules in the CG
scheme. Therefore, whenever we compare with physico-
chemical properties, a renormalization factor of 11 is taken
into account (see below).

The packing factor of the WT4 spheres calculated as the
volume of the cubic box that contains the WT4 molecules
divided into the excluded volume of beads is ∼0.47, close
to the 0.5 calculated for the SPC model. These values are
significantly lower than the ideal 0.74 expected for the
hexagonal closest packing (the maximum compaction for
rigid spheres). This suggests that the bulk structure of WT4
leaves a number of interstitial cavities in a slightly higher
proportion than in the SPC model.

CG Model for the Ions. Three ionic species were
developed to represent, at the CG level, the hydrated states
of Na+, K+, and Cl- (hereafter called NaW+, KW+ and
ClW-, respectively).

Ions were developed considering that six water molecules
are always attached to them29 (i.e., roughly considering an
implicit first solvation shell). Therefore, their masses were
set as the sum of the ionic mass plus that of six water
molecules (Table 1). Partial charges were set to unitary
values. The van der Waals radii were adopted to match the
first minima of the radial distribution function (RDF, also
known as g(r)) of hydrated ions as obtained from neutron
diffraction experiments.30 The deepness of the well was
set to the same values as the WT4 beads. This was done
to ensure compatibility since when a WT4 molecule
contacts a CG ion it interacts with its first solvation shell,

Table 1. Interaction Parameters of the CG Models for Water and Ionsa

bond parameters

mass (au) charge (e) σb (nm) ε (kJ mol-1) deq (nm) Kbond
c (kJ mol-1 nm-2)

SPC27 Ow:16 Ow:-0.82 0.3166 0.650 0.1d 172500
Hw:1 Hw:+0.41

TIP3P28 Ow:16 Ow:-0.8340 0.315061 0.6364 0.09572d 251208
Hw:1 Hw:+0.4170

WT4 OWT4:50 OWT4:-0.41 0.42 0.55 0.45e 2092
HWT4:50 HWT4:+0.41

NaW+ 130.99 1 0.58 0.55
KW+ 147.1 1 0.645 0.55
ClW- 143.45 -1 0.68 0.55

a The parameters of two common atomistic water models (SPC and TIP3P) are included for comparison. b Distance from the atomic
center to the minimum of the vdW function. c Corresponds to a harmonic approximation of the form Ebond ) Kbond(d - deq)2.
d Hydrogen-oxygen distance. e Interbead distance.
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which is implicitly considered. A list of nonbonded
interaction parameters for the CG monovalent ions is
detailed in Table 1.

CG Model for DNA. The CG system used for DNA was
essentially the same as that previously presented by us.24

This CG model reduces the complexity of the atomistic
picture to six beads per nucleobase (see Supporting Informa-
tion Figure S1 for the coarse graining scheme). This mapping
keeps the “chemical sense” of specific Watson-Crick
recognition allowing the 5′-3′ polarity. Similarly to the
approach taken here for water and ions, molecular interac-
tions are evaluated using a classical Hamiltonian. The beads
used in this representation carry partial charges, which
permits the use of explicit electrostatics

Minor changes have been introduced to the interaction
parameters to improve the stability of the double strand using
a time step of 20 fs. Back mapping of the atomic coordinates
during the trajectory permitted an evaluation of the overall
structural quality of the DNA dodecamer in terms of helical
parameters (Supporting Information Figure S2). This new
parameter set reproduces equally well the structural features
of the double-stranded helix.

The complete set of new parameters for DNA is listed in
Supporting Information Table S1.

A similarity index between the present implementation and
that using the GB model for implicit solvation was calculated
from the covariance matrices obtained from the trajectories
performed in the present work and that performed in Dans
et al.24 for the Drew-Dickerson dodecamer.

Molecular Dynamics. MD simulations were performed
using Gromacs 4.0.531-34 in the NPT ensemble unless
otherwise stated. The temperature was coupled using the
Nose-Hoover thermostat,35,36 while pressure was kept at 1
bar by means of a Parrinello-Rahman37,38 barostat, with
coupling times of 1 and 5 ps, respectively. A cutoff for
nonbonded interactions of 1.2 nm was used, while long-range
electrostatics were evaluated using the Particle Mesh Ewald

approach.39,40 A time step of 2 fs was used in all-atom (AA)
simulations, while in the CG simulations the time step was
set to 20 fs. In order to ensure that the use of such a relatively
long integration step does not introduce energy conservation
problems, we performed a series of simulations at constant
energy (NVE ensemble) using such a time step and varying
the cutoff. For an acceptable accuracy in the integration of
the equations of motion, one should expect the fluctuations
of the total energy to be lower than one-fifth (20%) of the
kinetic or potential energy components of the system.41

According to our results, this criterion is well fulfilled with
total energy fluctuations representing 5% of potential or
kinetic energy fluctuations, using cutoff values of 1.0, 1.2,
and 1.5 nm (Supporting Information Table S2). It was
decided to use a cutoff of 1.2 nm, which besides ensuring
energy conservation also includes direct nonbonded interac-
tions up to the second neighboring WT4 molecule in solution.
Additionally, NVT simulations were performed for some
systems in order to compute the WT4 surface tension and
the ionic osmotic pressure as detailed below.

All of the interactions (i.e., WT4-WT4, WT4-ion,
ion-ion, ion-DNA, WT4-DNA, and DNA-DNA) were
straightforwardly calculated within the pairwise Hamiltonian
of Gromacs 4.0.5, which is common to many popular MD
packages. The van der Waals cross interactions were
calculated using the Lorentz-Berthelot combination rules.

Five atomistic (S1-5
AA) and 15 CG systems (S1-15

CG) were
constructed to evaluate different properties of interest (see
Table 2). Atomistic simulations were used to obtain reference
properties to be compared with the CG models for water
and ions. Systems S1

AA and S4
AA were used to compute

density and diffusion coefficient profiles in a relevant range
of temperatures (see Table 2). The temperature scan was
carried out raising the reference temperature by 5° in steps
of 5 ns.

Both radial distribution functions (ion-Ow) and electro-
static potential (on the line connecting both ions) were

Table 2. Description of the Simulated Systems

system
water
model

number of
molecules

ionic species
(number of ions)a solute temperature (K)

simulation
time (ns)

ionic pair
concentration (M)

AAb S1
AA SPC 2483c 278-323 45

AA S2
AA SPC 5368c Na+(1) Cl-(1) 300 20 0.01

AA S3
AA SPC 5368c K+(1) Cl-(1) 300 20 0.01

AA S4
AA TIP3P 2483c 278-323 45

AA S5
AA TIP3P 7612c Na+(34) Cl-(34) 300 15 0.5

CGd S1
CG WT4 497e 300 100

CG S2
CG WT4 497e 278-328 200

CG S3
CG WT4 268e 300 3

CG S4
CG WT4 268e 300 3

CG S5
CG WT4 473e NaW+(1) ClW-(1) 300 100 0.01

CG S6
CG WT4 473e KW+(1) ClW-(1) 300 100 0.01

CG S7
CG WT4 456e NaW+(44) ClW-(44) 300 30 0.5

CG S8
CG WT4 456e KW+(44) ClW-(44) 300 30 0.5

CG S9
CG WT4 174e NaW+(7) ClW-(7) 300 200 0.2

CG S10
CG WT4 174e KW+(7) ClW-(7) 300 200 0.2

CG S11
CG WT4 170e NaW+(11) ClW-(11) 300 200 0.3

CG S12
CG WT4 170e KW+(11) ClW-(11) 300 200 0.3

CG S13
CG WT4 655e NaW+(34) ClW-(34) 300 100 0.5

CG S14
CG WT4 655e KW+(34) ClW-(34) 300 100 0.5

CG S15
CG WT4 506e NaW+(19) KW+(19) ClW-(16) CG-DNA 300 4000 0.15f

a Parameters from Berendsen et al.44 and van Gunsteren et al.45 In system S5
AA, the CHARMM PARAM27 parameters46 were used.

b AA: all atoms. c Atomistic water molecules. d CG: coarse grain. e WT4 molecules. f Not considering 22 neutralizing counterions.
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calculatedfromsystemsS2
AAandS3

AA,where thecation-anion
distance was kept fixed at 3.6 nm during the whole
simulation. This last property was also calculated for system
S1

AA at room temperature in order to use it as a reference
state for pure water. System S5

AA was used to validate the
methodology for measuring the osmotic pressure (described
in the Supporting Information).

Regarding the CG simulations, bulk water properties under
room conditions were obtained from system S1

CG. The
behavior of the model in the range of temperatures from 278
to 328 K was assessed using system S2

CG. The temperature
scan was carried out as in the corresponding atomistic
simulations (S1

AA and S4
AA) but using time windows of 20

ns instead of 5 ns.
Surface tension and isothermal compressibility at the CG

level were computed from systems S3
CG and S4

CG, respec-
tively, according to the following steps, as proposed else-
where.42 First, an initial configuration at 300 K and 1 bar
(generated by a short NPT equilibration of a simulation box
containing 268 WT4 molecules) underwent a 0.1 ns equili-
bration in the NVT ensemble. The resulting configuration
was used, on one hand, to construct system S3

CG by adding
vacuum slabs above and below the water bulk, so the box
length in the z direction was tripled. A 3 ns production NVT
simulation was conducted in such a system at 300 K, from
which the surface tension was computed from the pressure
tensors:

On the other hand, the NVT equilibrated configuration was
also used as the starting structure (system S4

CG) for a 3 ns
NPT simulation at 300 K and 1 bar, from which the
isothermal compressibility was computed according to43

Radial distribution functions (CG ion-WT4) and an
electrostatic potential profile (obtained in the same way as
in the atomistic system) were calculated for systems S5

CG

and S6
CG and compared with systems S2

AA and S3
AA,

respectively, in order to assess the ability of the CG model
to reproduce atomistic results.

Systems S7
CG and S8

CG were used to compute radial
distribution functions (CG ion-WT4) using an ionic concen-
tration of roughly 0.5 M, in order to compare them with
experimental data.30

Bjerrum (λB) and Debye (κ-1) lengths were calculated as

where � is the thermal energy, ε0 ) 8.85 × 10-12 C2 J-1m-1,
F ) 96485.3399 C mol-1, and R ) 8.314472 J mol-1 K-1.

The dielectric constants of the electrolyte aqueous solutions
(Na+Cl- and K+Cl-) at different concentrations (0.2 and
0.3 M) were obtained from simulations of systems S9-12

CG

(see Table 2).
The osmotic pressure measurement was based on the

methodology presented by Roux and Luo47 (systems
S13,14

CG). The idea behind it is to simulate an aqueous
solution where the ions are restrained to stay only in one-
half of the simulation box and from the force exerted by the
restraints, calculate the osmotic pressure. To accomplish this,
we used a restraining strategy previously developed in our
group called BRIM48 (see the Supporting Information for a
more exhaustive explanation).

Finally, we performed a 4 µs unconstrained simulation
(S15

CG) of a CG version24 of a double-stranded DNA using
the Drew-Dickerson sequence 5′-d(CGCGAATTCGCG)-
3′ in an octahedron box filled with WT4 and CG ions (see
Table 2). Global DNA structural behavior, DNA hydration,
and specific DNA-water and DNA-ion interactions were
evaluated. Helical parameters for DNA were computed using
the Curves+ software.49 The cation-induced narrowing of
the minor groove was studied. Such structural changes were
estimated from the average interphosphate distance between
opposite strands measured for the following pairs: {(5, 24),
(6, 23), (7, 22), (8, 21), (9, 20), (10, 19), (11, 18), (12, 17)}
(italics indicate the residue numbers at the AT track). Cations
were considered to be bound to the minor groove if their
distance to the phosphate groups of both opposite strands
was below 0.5 nm.

Results

In the following paragraphs, we describe the performance
of the WT4 model to reproduce some common parameters
of pure water. Comparisons are made, whenever possible,
against experimental data. However, some of the calculated
properties are also confronted with the results obtained from
popular atomistic water models just to provide a reference
frame for our results against well established AA models
used by the broad scientific community. Subsequently, we
analyze the solvation structure of simple electrolyte repre-
sentations. Finally, to provide an example of application to
a biologically relevant system, we briefly present a simulation
of a CG DNA double helix in the presence of explicit solvent
and mixed salts. A more detailed study on different properties
of DNA (flexibility, breathing, DNA-solvent interactions
on the multi-microsecond time scale, etc.) will be published
elsewhere.

WT4 in the Bulk. A characteristic feature of water is its
intrinsic ordering. A good reproduction of the oxygen-oxygen
radial distribution function is a common goal for most water
models in atomistic detail. The shape of the radial distribution
function (RDF) at points far from the first spheres of
hydration may furnish an idea of the liquid character of the
substance under study. While for a liquid the RDF is
expected to converge to a unitary value after a certain point,
repetitive behavior is indicative of a crystalline state.

Although the RDF obtained with our model retains some
characteristic features of liquid water, comparison of the RDF
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obtained for WT4 with other atomistic models reveals some
dissimilarities. The most evident difference with respect to
the RDF calculated for SPC or TIP3P simulations (systems
S1

AA and S4
AA) is the complete lack of the first solvation

peak. Owing to the size and topology of the beads, WT4
presents a void space from the center of each bead up to the
distance corresponding to the second solvation shell of real
water. In this sense, the WT4 representation can be consid-
ered a second shell solvation model. In fact, the position of
the first maximum in WT4 corresponds to the second peak
of atomic water50 (Figure 2A). It is important to notice that
the normalization to the bulk value and the more granular
character of the CG model generates a difference in the
relative heights of the probability distribution of WT4 with
respect to real water. Furthermore, the harmonic bonds
existing within the tetrahedron translate into an overestima-
tion of the probability of finding the first neighbor in the
WT4 solution. After this global maximum, the relatively
large size of WT4 generates some residual ordering that
extends up to ∼1.2 nm. The radial distribution function
converges to one (bulk density) beyond 1.3 nm.

An important property for models of liquid water is their
capability to reproduce the correct water diffusion. Clearly,
the diffusivity of the WT4 molecules is much lower than
that of atomistic water. At 300 K, we obtained a value of
2.03 × 10-6 cm2 s-1. However, the displacement of a WT4
molecule implicitly represents the movement of the center
of mass of ∼11 water molecules. Taking into account that
the average mean squared displacement of the center of mass
of N molecules is N times slower than the average mean
squared displacement of N molecules diffusing separately,53,54

we can conclude that the self-diffusion coefficient for the
water molecules represented by the CG model at room
temperature is 2.23 × 10-5 cm2 s-1, which is in good
agreement with the experimental value (Table 3).

The WT4 model includes the explicit treatment of the
electrostatic interactions as each bead carries a point charge
(Table 1). This gives rise to a dielectric permittivity without
imposing a continuum dielectric medium. The dielectric
permittivity simulated by WT4 is 110.55 Although this value
is nearly 30% higher than that of real water, it must be
noticed that this has been a problematic point even for more
sophisticated atomistic models of water, and values ranging
from 5356 to 11657 have been reported.

An important issue regards the long-range ordering of the
WT4 molecules. In fact, some CG models for water present
a freezing point very close to room temperature.41 Therefore,
we sought to perform a temperature scan over a range from
278 to 328 K. This range of temperatures covers most of
the potential and biologically relevant applications of the
model. Calculation of the RDF along the studied temperature
range suggests that WT4 retains its liquid character, as no
significant changes are found between 278 and 328 K (Figure
2A, inset).

The density of the WT4 model was set to match the value
of pure water at 300 K. However, a reasonably good
reproduction of the variations of the density versus temper-
ature is also desirable. From the qualitative point of view,
we obtained the expected reduction of the density with the

Figure 2. Bulk properties of WT4. (A) RDF calculated over
all of the WT4 beads at room temperature from system S1

CG

(green line). Comparison is made with the oxygen-oxygen
RDF calculated from TIP3P and SPC atomistic simulations
as obtained from systems S1

AA and S4
AA at 298 K (black

line and red line, respectively). The position of the second
solvation peak obtained from experiments50 is also shown
(vertical, dot-dashed line). The inset shows the behavior
of the RDF upon temperature variations (system S2

CG) in
the range from 278 to 328 K. No significant changes are
observed. (B) The variation of the CG water mass density
with the temperature (filled squares) calculated from sys-
tem S2

CG as compared with experimental data (empty
squares)51 and simulations of SPC (triangles) and TIP3P
(circles) systems (S1

AA and S4
AA, respectively). The inset

shows the relative error of the WT4, SPC, and TIP3P
models compared to the experimental data. (C) The
dependence of the diffusion coefficient on temperature is
compared between the WT4, SPC, and TIP3P models
(S2

CG (filled squares), S1
AA (triangles), and S4

AA (circles),
respectively) and experimental data52 (empty squares). All
four profiles present an almost linear trend, as revealed by
the corresponding linear fits.
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temperature and an almost perfectly linear behavior of the
system’s density against temperature in the explored range
(Figure 2B). Although the functional dependence of real
water against temperature is certainly not linear, it is a good
approximation within the temperature range chosen. In fact,
the relative error of the WT4 density with respect to that of
the real water in this temperature window remains always
below 3%, with the higher deviations near the critical point
of real water (Figure 2B). This behavior is comparable with
those of the SPC and TIP3P atomistic models (Figure 2B).

Following the volume changes upon thermal variations at
constant pressure allows also for the calculation of the
isobaric expansion coefficient of our model. We obtain an
overestimation of this quantity at 298 K (Table 3). The
expansion coefficient of WT4 gives a value of 11.6 × 10-4

K-1 as compared with the experimental value of 2.53 × 10-4

K-1.51 Although overestimated, it is comparable with the
values reported for widely used three-point water models
(Table 3).

Another frequently calculated property for CG models is
the surface tension. In our case, we obtained a value of 17
mN m-1, which is nearly 4 times smaller than the experi-
mental value. Similarly, we found a 5 fold higher isothermal
compressibility as compared with the experimental value
(Table 3). These discrepancies are very frequently found in
CG models that lump a number of water molecules into one
single entity.42 The origin of this effect may be the loss of
fully atomic interactions that decrease the cohesive forces
and increase the granularity of the system.

A more stringent test for our representation comes from
the calculation of the diffusion coefficient. Clearly, a rise in
the diffusion must occur upon heating. Experimental data
indicates that pure water experiences a nearly linear increase
in the diffusion coefficient between 278 and 328 K. The
model shows the correct dependence of the diffusion
coefficient on temperature. Indeed, it shows good agreement
with the experimental behavior within the explored range
(Figure 2C).

Taking into account the above results, the range of validity
of the model may be delimited by the following consider-
ations: the lower limit should not go below 278 K. Applica-
tions at lower temperatures are strongly discouraged since
ice formation implies quantum effects that can, obviously,
not be achieved by simplified models. On the upper limit,
the relative error in the renormalized diffusion coefficient
arrives at ∼11% at 328 K, suggesting that simulations at
higher temperatures could require some reparameterization
to keep the accuracy at acceptable levels.

Ionic Solvation. The characteristics of the WT4 model
open the possibility to study the solvation properties of
systems in which electrostatics are dominant. In this context,
we developed the CG parameters of three simple electrolytes:
Na+, K+, and Cl-. Since we can imagine WT4 as a second
solvation shell model, we represent ions together with their
first sphere of hydration. Aimed at exploring the solvation
structure generated by the WT4 model on the CG ions,
simulations were conducted at roughly similar ionic con-
centrations to those reported in neutron diffraction experi-
ments.30 As depicted in Figure 3A, there is good correspon-
dence, especially for the cations, between the first solvation
maximum found for WT4 and the second hydration shell
estimated from the experimental data.30 A second solvation
peak is found at nearly 0.9 nm, which has to be considered
mainly as an artifact of the geometry of the model since the
beads located in the last peak are harmonically linked to those

Table 3. Bulk Water Properties at Room Conditions for Atomistic Water Three-Point Models (SPC and TIP3P), WT4, and
Experimental Data

dielectric
constant

diffusion
coefficient

(10-5 cm2 s-1)

expansion
coefficient
(10-4 K-1)

mass density
(g mL-1)

number
densitya

(× 1022 mL-1)
surface tension

(mN m-1)

isothermal
compressibility

(GPa-1)

WT4 110 2.23 11.6 1.0001 0.3 17 2.43
SPC 6558 3.8559 7.360 0.970561 3.2 53.462 0.5363

TIP3P 8256 5.1959 9.264 1.00264 3.4 49.562 0.5863

Exp. 78.465 2.2766 2.5351 0.997051 3.3 71.267 0.4668

a Calculated from the corresponding mass density, considering the molar mass of water (18 g mol-1) and WT4 (200 g mol-1).
Accordingly, the number density for the atomistic models and real water corresponds to the number of water molecules per milliliter, while
for WT4 it corresponds to the number of WT4 molecules (∼11 water molecules) per milliliter.

Figure 3. Ionic solvation. (A) The RDF of WT4 around CG
electrolytes computed for systems S7

CG and S8
CG (NaW,

black; KW, red; ClW, blue for NaW+ClW- and green for
KW+ClW-). Vertical dashed lines indicate the position of the
second solvation peak as determined from neutron scattering
experiments.30 The inset shows a closeup on the region
between 0.43 and 0.54 nm allowing for a more precise
comparison. (B, C, and D) Comparison between RDFs
obtained from atomistic and CG simulations (systems S2

AA,
S3

AA, S5
CG, and S6

CG). The plot corresponding to the solvation
structure around chlorine ions in the presence of potassium
is similar to that shown for the case of sodium. It is omitted
for brevity.
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of the first. After that point, the RDF converges to the bulk
value in all cases.

Unfortunately, experimental data for ionic solvation is
only available at high electrolyte concentrations. To
explore lower (and more physiological) concentrations for
which no experimental data are available, we tried a
comparison with atomistic simulations confronting systems
S2

AA and S3
AA with systems S5

CG and S6
CG, respectively,

both having an ionic concentration of 0.01 M (Figures
3B, C, and D).

In close analogy with the case of pure WT4, the RDF of
WT4 around CG ions shows a complete lack of the first
solvation shell. A good reproduction of the position of the
second solvation peak is observed, confirming the behavior
of WT4 as a second solvation shell solvent. As expected,
WT4 is not able to reproduce the third solvation shell. The
relevance of this inaccuracy is, however, uncertain and could
only be relevant in the case of chlorine ions, where such a
shell is slightly more pronounced.30

Electrostatic Potential. Having analyzed the hydration
structure of simple electrolytes, we turned our attention to
the profiles of electrostatic potential and the screening
properties. This was done by comparing the results of
systems S2

AA and S3
AA against those of S5

CG and S6
CG,

respectively. These systems consist of an ionic pair of
Na+Cl- (or K+Cl-) kept at a fixed position during the
simulation. The separation between both ions was 3.6 nm.
Atomistic ionic pairs were immersed in a computational box
containing an equivalent number of water molecules. This
setup allowed us to compare under similar conditions
atomistic and CG simulations as well as the behavior of the
different ionic species. In order to assign the proper weight
to the perturbations introduced by the electrolytes, we also
made comparisons with the fluctuations produced by pure
solvent (atomistic and CG) in the profiles of the electrostatic
potential. In this way, it is possible to separate the observed
features into two components: intrinsic bulk fluctuations and
ionic perturbations. Furthermore, this approach gives an idea
about the relaxation of the ionic potential at increasing
distances from the ion and compares it with pure water and
electrolyte solution.

A comparative view of the atomistic versus CG simulation
can be acquired from Figure 4A. The first noticeable

difference regards the height of the peaks centered on the
positions of the ions. Owing to its smaller size, the SPC
waters can get closer to the atomistic ion generating a more
pronounced electrostatic screening. In the CG counterpart,
the corresponding first solvation shell, which is implicit in
the NaW+ and ClW- ions, only serves to create a void space
without screening properties. This translates to a higher
electrostatic potential induced by the CG ion. The implicit
consideration of the first solvation shell in the CG ions
implies that the first minimum observed in the atomistic
system is absent in the CG system (Figure 4A). Furthermore,
the position of the first minimum observed in the CG
simulation (second solvation shell) roughly corresponds to
the position of the second minimum around the ion in the
atomistic system. Clearly, this effect derives from the
solvation structure around the electrolytes; i.e., the first
and second minima around the position of the ions (both,
Na+ and Cl-) shown in Figure 4A correspond to the
position of the oxygen atom in the first and second
solvation shells shown in Figure 3B and D. Similar
features are observed for the cases of K+Cl- and
KW+ClW- ionic pairs (Figure 4B).

The distinctive characteristics of both cations evidenced
by the solvent organization around NaW+ and KW+ (Figure
3A) can also be obtained from the calculation of the
difference in electrostatic potential measured at the position
of the cation with respect to that of its first minima (Figure
4A,B). This difference was about 10% higher for the case
of KW+ with respect to NaW+, in qualitatively good
agreement with the ∼25% obtained from the atomistic case.
This behavior may reflect the fact that water around
potassium is bound in a more disorderly fashion than around
sodium,29 probably generating a less marked electrostatic
screening in the case of potassium.

As seen from Figure 4A and B, the CG scheme presents
higher fluctuations in the potential than the atomistic system.
Aimed at excluding the possibility of a spurious ordering of
WT4 molecules around the electrolytes, we compared the
perturbations in the electrostatic potential introduced by the
ions against those observed for pure solvent (both, atomistic
and CG). This was assessed by computing the electrostatic
potential along an arbitrary axis in two simulation boxes
containing pure SPC and WT4 (systems S1

AA and S1
CG,

Figure 4. Profiles of electrostatic potential. (A) Electrostatic potential calculated along the line connecting the ionic pairs Na+Cl-

(filled line, S2
AA) and NaW+ClW- (dashed line, S5

CG). Arrows indicate the points where the differences in the electrostatic
potential were calculated. (B) Same as A for systems K+Cl- (S3

AA) and KW+ClW- (S6
CG). (C) Comparison of the electrostatic

potential between the central portion of panel A (filled line, S2
AA) against the analogous quantity calculated along a box containing

pure SPC water (dot-dashed line, S1
AA). (D) Same as C but for the CG systems (dashed line, S5

CG, and double-dot-dashed line,
S1

CG).
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respectively). Superposition of both profiles (Figure 4C and
D) suggests that both pure water systems show important
fluctuations in the electrostatic potential of nearly the same
magnitude as those observed in the region between the ions
in the ionic solution. This indicates that the perturbations
observed in those regions are not an effect induced by the
ions but correspond to variations in the electrostatic potential,
which are intrinsic to the pure solution. According to this,
the difference in the amplitude of the fluctuations observed
between the atomistic and CG models (Figure 4A and B)
are explained by the augmented granularity of the CG model.
An estimation of such a difference is obtained from the
approximate amplitudes observed in both atomistic (∼0.002
V) and CG (∼0.018 V) simulations. This indicates that the
oscillations in the CG system have amplitudes nearly 1 order
of magnitude higher than the ones in the atomistic system.

Bulk Electrolytic Properties. The vast majority of
empirical parametrizations for single ions are typically
developed to fit single ion properties, such as those examined
in the previous sections. In order to complement the structural
description of the CG aqueous solutions we studied some
thermodynamic properties regarding ion-ion interactions:
in particular, the Bjerrum and Debye lengths. The first
represents the separation between two elementary charges
at which the electrostatic interaction is comparable in
magnitude to the thermal energy, and the second provides
information regarding the distance at which the electrostatic
potential of one ion is screened by the ionic strength of the
surrounding medium. From the qualitative point of view, we
retrieved the correct tendency in Bjerrum and Debye lengths
upon changes in the ionic concentration (Table 4). Calcula-
tion of the Bjerrum and Debye lengths at 0.2 and 0.3 M
gave values within a maximum error of 13% with respect to
experimental values (Table 4). We obtained an underestima-
tion of the Bjerrum length and, correspondingly, an over-
estimation of the Debye length, which is indicative of a
slightly higher global electrostatic screening in the bulk
solution, independent of the salt considered in the simulation
(i.e., NaW+ClW- or KW+ClW-).

A direct measurement of the strength of the effective
solvent-mediated interaction between ions is also very
relevant, and it can be obtained from the osmotic pressure.
For the case of NaW+ClW- at an ionic concentration of
0.5 M, we obtained a value of 35 bar (33 bar for
KW+ClW-), which is essentially identical to that obtained

by atomistic simulations using the CHARMM force field.
Despite the large standard deviations, these values are in
agreement with experimental reports (Table 4), suggesting
a satisfactory balance in ion-ion and ion-WT4 interactions.

CG Solvation of Double-Stranded DNA. As a final
example of application, we analyzed the explicit solvation
of a dodecameric segment of double-stranded DNA. For this
task, we used the already published CG scheme for simulat-
ing nucleic acids within the framework of the generalized
Born model for implicit solvation.24 In this contribution, the
same system was simulated in the presence of explicit solvent
and added salts. Both approaches furnish a similar picture
of the structural and dynamical behavior of the double-helical
segment of DNA with a maximum pairwise RMSD between
both average structures of 0.25 nm. This is in agreement
with the good reproduction of helical parameters obtained
upon backmapping from the DNA simulation in explicit CG
solvent (Figure S2, Supporting Information). Furthermore,
the superposition of the covariance matrices calculated along
the MD trajectories of the Drew-Dickerson dodecamer
performed using implicit and explicit solvation gives an
identity of 84%. This strongly suggests that both approaches
sample nearly equivalent conformational spaces.

During the dynamics in the presence of explicit CG
solvent, the global structure of the DNA dodecamer was
fairly well conserved with an average RMSD of 0.25 nm
from the starting (canonical) conformer. This can be inferred
from the good superposition of snapshots taken at different
times of the simulation (Figure 5A). Moreover, a good
agreement is also obtained at the atomistic level upon
backmapping. The all atoms RMSD of those shapshots
compared with the X-ray structure 1BNA resulted in values
of 0.35 nm (blue), 0.39 nm (green), and 0.34 nm (orange)
(Figure S3, Supporting Information).

The WT4 molecules and cations closely interact with the
CG nucleobases. It can be observed that the ordering of
the WT4 molecules around the DNA qualitatively resembles
the hydration features encountered in atomistic systems at
both experimental and theoretical levels.70-75 Conical ar-
rangements of WT4 beads form around the phosphate groups
(Figure 5B). The molecules of WT4 acquire an orientation
guided by the electrostatic attraction between the positive
(hydrogen-like) beads and the negatively charged phosphate
superatoms. This results in the formation of structures alike
to hydration cones (Figure 5B). In this kind of solvent
arrangement around the backbone, WT4 molecules can be
replaced by cations from the solution (Figure 5B) as observed
experimentally.76 Furthermore, ions can also remain tran-
siently bound to the DNA visiting different positions within
the minor groove. Extended hydration of the major groove
and the formation of hydration spines in the minor groove
are also observed, as illustrated in Figure 5C. A compre-
hensive picture of the hydration structure can be obtained
from the WT4 beads’ occupancy density map projected in
the plane perpendicular to the DNA axis placed at the AT
step (Figure 5D).

A more quantitative view of the solute/solvent interaction
can be obtained from the cumulative RDF of the different
species around the phosphate superatoms (Figure 5E). The

Table 4. Thermodynamic Properties of Electrolyte
Solutions

Bjerrum
length (nm)

Debye
length (nm)

osmotic
pressurea (bar)

F (molarity) 0.2 M 0.3 M 0.2 M 0.3 M 0.5 M
NaW+ClW-/WT4 0.57 0.61 0.76 0.6 35 (s.d. 15)
KW+ClW-/WT4 0.55 0.61 0.78 0.6 33 (s.d. 16)
Exp.b NaCl 0.75 0.77 0.66 0.53 ∼25 (taken from

Roux and Luo47)KCl 0.74 0.76 0.67 0.54

a The value obtained in the atomistic simulations using
CHARMM PARAM 27 was 37 (s.d. 9) bar. b The function εr(F) )
ε(0)/(1 + AF) (NaCl, A ) 0.27; KCl, A ) 0.24), which results from
fitting to experimentally obtained dielectric constants,69 was used
to estimate εr(F) at the desired concentration, which is necessary
for the computation of both Bjerrum and Debye lengths.
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directionality in the WT4- phosphate interaction is evident
from the right shift observed in the integral of the RDF
corresponding to the oxygen-like beads’ position with respect
to that of the hydrogen-like beads (compare red and black
lines in Figure 5E). The position of the first WT4 solvation
shell forming conical structures lies at 0.4 nm from the
phosphate superatom. This distance is in good agreement
with the 0.38 nm found in atomistic simulations24 and is
comparable to the minimum distance of 0.32 observed in
X-ray structures.77

Our model can also take into account the specificity in
the DNA-cation interactions. As expected, sodium ions are
more prone than potassium to interact with the solute. As
mentioned above, sodium is frequently found in the close
neighborhood of the phosphate moieties and even within the
minor groove.76,78,79 The closest sodium shell is localized
at 0.45 nm from the phosphate, as compared with the 0.5

nm found for the bulkier potassium. In contrast, the radial
distribution of the chlorine ions is much more shifted to the
right with a first peak at 0.76 nm (Figure 5E).

The fraction of DNA charge neutralized within a cylinder
of 0.9 nm from the exterior surface of the double-stranded
helix is 0.75. This is in good agreement with the fraction of
condensed counterions calculated within the condensation
volume using Manning’s counterion condensation theory for
polyelectrolytes.80 Moreover, this number is comparable with
a fraction of 0.76 obtained by previous atomistic simulations
using the same DNA sequence.81 Among the fraction of
condensed counterions, 76% corresponds to sodium and 24%
to potassium; this is in qualitative agreement with a series
of experimental and theoretical studies (see Savelyev and
Papoian82 and references therein).

While the global distribution of cations around the DNA
contributes to the stability of the double helix, the specific

Figure 5. DNA and solvation structure. (A) Superposition of the DNA conformers taken from the first (blue), middle (green),
and last (orange) frame of the simulation of system S15

CG. Spheres indicate a pair of phosphate superatoms from opposite
strands, which are highlighted in order to show the minor groove narrowing. An atomistic view of this superposition obtained
from backmapped CG coordinates can be seen in Figure S6, Supporting Information. (B) WT4 and NaW specific interaction
with the phosphate groups taken from a representative MD snapshot. The dashed lines highlight the conical arrangement of
WT4 beads around phosphates (top) and the competition for the phosphate groups by WT4 and NaW (bottom). (C) WT4 solvation
in the major and minor grooves from a random frame. The extensive hydration of the major groove and spines of hydration
within the minor groove are evident. (D) WT4 occupancy density map projected onto a plane orthogonal to the DNA axis, located
in the central AT step. The color scale represents the occupancy level, with a color range from cyan (low occupancy) to purple
(high occupancy). Differences in major and minor groove are plain. Notice also the more punctuated location of WT4 within the
minor groove indicative of solvation spines. (E) Cumulative number (integral of the RDFs) of negative and positive WT4 beads
(red and black, respectively), NaW+ (green), KW+ (blue), and ClW- (violet), with respect to the phosphate groups. Arrows
indicate inflection points, which correspond to the first maxima of each RDF.
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interaction of cations with DNA has been related to local
structural distortions. In particular, the binding of sodium
ions within the minor groove has been proposed to mediate
a narrowing in the minor groove.83 In agreement with this
proposal, we observed a clear correlation between the width
of the minor groove and the binding of cations. Moreover,
there seems to be a cumulative effect between these two
events; i.e, a higher number of bound ions induces a more
pronounced narrowing. This is clear from a measure of the
average width of the minor groove with respect to the total
number of bound ions (Figure 6A). The binding of one single
ion is enough to induce a sensible change in the minor
groove. Upon the successive incorporation of ions, the
narrowing becomes more marked, reaching a minimum when
six ions are concomitantly bound. Experimental studies on
the same dodecamer also reveal a high occupancy of cations

in the minor groove, leading to its narrowing.78 Furthermore,
a highly ordered structure is formed when cations and water
interact with the AT track of the DNA. Such a structure is
organized in four layers of solvent sites and resembles a
series of fused hexagonal motifs.78 Figure 6B shows the 3D
occupancy map of WT4 and cations around the minor groove
of the AT track. This map reveals sites highly occupied by
WT4 (red wire mesh), NaW+ (green wire mesh), and KW+

(blue wire mesh) that resembles a zig-zag structure (dashed
path connecting black points in Figure 6B). When such a
zig-zag structure is superimposed onto the experimentally
observed fused hexagon motif, good agreement is obtained
for the second and fourth solvent-site layers, as confirmed
by the inter solvent-site distances (Figure 6C).

The minor groove narrowing process appears to take place
on two different time scales. The first is related to the binding

Figure 6. Binding of cations within the minor groove. (A) The minor groove width averaged over all frames with an equal
number of bound cations is plotted against the number of bound ions (according to the criteria explained in the Methods section).
(B) WT4 (red), NaW+ (green), and KW+ (blue) occupancy isosurfaces located in the minor groove of the AT track. Dashed path
connecting black points indicate the zig-zag motif formed by the cations and WT4 beads in the minor groove. (C) Scheme
showing the superimposition of the zig-zag motif (black circles connected by dashed line) observed in the CG simulation over
the fused hexagon motif (continuous line) formed by the solvent sites (cyan, violet, gray, and orange circles) experimentally
observed. These sites can by occupied by both water or cations.77 The distances between corresponding solvation sites in the
fused hexagon motif are shown and compared to the corresponding ones in the zig-zag motif (parentheses). (D) Minor groove
width (top) and number of bound cations plotted against time (bottom). The number of cations is shown as the number of NaW+

(green), number of KW+ (blue), and total number of cations (sum of the number of NaW+ and number of KW+, in red).
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of one or two ions for up to a few dozen nanoseconds, while
the second corresponds to the simultaneous binding of three
to six ions for a period of nearly 1 µs (Figure 6D). This last
induces a more marked and persistent but always reversible
structural distortion with an average minor groove width of
0.98 nm (three bound cations) to 0.94 nm (six bound cations).
The magnitude of this DNA distortion is in very good
agreement with the average value of 0.96 nm obtained
experimentally.79

It is worth noticing that temporal scales for sodium binding
are coincident with the faster events found in this study have
been reported for MD simulations at the atomistic level.83-85

Unfortunately, the longest atomistic simulation reported in
this system was carried out for 1.2 µs.83 Although only
nanosecond binding events were reported in that work, the
agreement of the position of the binding sites and DNA
distortion with X-ray data78,79 may allow for speculation that
a lack of longer binding events in the atomistic simulation
could be related to insufficient sampling. Clearly, longer
simulation times that go beyond the introductory scope of
this paper would be needed to properly sample these long
lasting events. This issue will be addressed in a forthcoming
publication.

There is a marked selectivity for sodium against potassium.
Indeed, while the simultaneous binding of more than two
sodium ions is very frequent, only two potassium ions were
present within the minor groove simultaneously, and this
rather rare event was detected only five times in the 4 µs
trajectory (Figure 6D and Figure S4, Supporting Informa-
tion).

Finally, to complete the picture regarding the ionic
structure around DNA, we analyzed the ionic distribution at
longer distances from the double helix. This was done by
calculating the number density of the three types of ions
present in the system at increasing distances from DNA. In
good agreement with the prediction from Poisson-Boltzmann
theory,86 the amount of electrolytes along a direction
perpendicular to the DNA principal axis follows an expo-
nential decay (Figure S5, Supporting Information).

Discussion and Conclusions

In this work, we have presented a model for simulating water
at a coarse grain level. The WT4 model presented here is
based on the transient tetrahedral structure adopted by water
molecules in solution, preserving the molecular character-
istics of the atomistic liquid. Due to the large number and
heterogeneity of the CG models proposed in the literature,
it is difficult to establish a fair comparison in terms of a
computational speedup obtained with WT4. However, a
comparison is more straightforward if we restrict it to the
simplest models that condense three or four water molecules
into a single bead.53,54,87 This implies a coarse graining factor
from 9 to 12, as compared to the value of ∼8 obtained for
WT4. In addition to a similar coarse graining factor, our
model offers some advantages, like the capacity to interact
via explicit short- and long-range electrostatic interactions,
and a dielectric permittivity. This grants the model the ability
to reproduce some of the characteristic properties of water
and electrolytic solutions.

The bead’s masses were assigned to fit the water density
at 300 K. Although this may raise some concerns about the
suitability of the model at different temperatures, the relative
error for the WT4 density with respect to the experimental
determination of pure water remains below 3% in the range
of 278 to 328 K (Figure 2B).

A strong assumption of the model is the fact that the
existences of these five-member water clusters are supposed
to be permanent, while their average lifetime in real water
is on the order of picoseconds. This defect is partially
compensated by setting a loose harmonic constraint between
the beads of our representation. This allows for bond
stretching variations of about 10% in the bond lengths,
conferring a large plasticity to the WT4 molecules and the
possibility of adapting their conformation according to its
molecular environment.

The use of the WT4 model to solvate simple ions
reproduces their hydration structure and some thermody-
namic properties such as osmotic pressure, which is often
considered a quality gauge of the parametrization.

We notice that important properties such as the isothermal
compressibility and surface tension are poorly described by
WT4. This may be of particular relevance in the study of
self-assembly phenomena, and for such treatment special
caution is advised. Despite this deviation from ideal behavior,
the description of the double-stranded DNA segment does
not seem to be compromised. This suggests that the
long-medium range screening properties of the solvation
model are suitable for overcoming the strong electrostatic
repulsion generated by the negatively charged phosphate
groups of DNA. In fact, the addition of explicit solvation
and different ionic species highly enhanced the description
of the DNA dynamics, allowing, for instance, the reproduc-
tion of the cation-mediated narrowing of the minor groove
that could not be studied within the implicit solvation
approach. While the implicit solvation approach can provide
a good and faster description of sequence dependent effects
on the structural and dynamical stability, inclusion of the
explicit solvent can allow for the study, for instance, of the
influence of intrinsic versus extrinsic sources of DNA
flexibility, solvent mediated effects, ionic specificity, etc.
Furthermore, the use of periodic boundary conditions and
explicit electrostatics permits a more realistic consideration
of long-range effects.

WT4 together with the CG electrolyte model represent
correctly the gross solvation structure around DNA, as noted
by the percentage of DNA charge neutralized at 0.9 nm that
closely resembles that of atomistic simulations and that
predicted by counterion condensation theory. Moreover,
DNA hydration features like the extensive major groove
hydration, minor groove hydration spines, and conical
arrangement around phosphate groups that resembles the
hydration cones observed in atomistic simulations and
experimental data are well reproduced. It is important to note
in this context that the development of interaction parameters
has always been carried out within the philosophy of fitting
structural properties of water, ionic solvation, and DNA. In
this respect, we first developed the representation for WT4
in the bulk and then added the description of simple CG
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electrolytes. Finally, the existing DNA parameters for implicit
solvation were slightly modified to further refine its structural
description when embedded in explicit solvent. In this sense,
good agreement with experimental determinations can be
considered emerging properties of the model because no
specific fittings of cross interaction potentials have been
performed.

The simulation scheme presented here allows for runing
at a rate of ∼1 µs per day (S15

CG) on a dual quad core PC
(Intel Xeon 2.66 GHz). This performance along with the
nearly atomic resolution achievable upon backmapping of
the coordinates in our DNA model24 make the millisecond
time scale reachable. This would effectively bridge the gap
between the time scales feasible to MD and those that are
biologically relevant.

Finally, we would like to stress the point that the model
presented here computes all of the interactions using a typical
Hamiltonian function, avoiding ad hoc code modifications/
recompilations. Topologies, interaction parameters, and
coordinate files for GROMACS implementation are available
from the authors upon request.
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(35) Nosé, S. A molecular dynamics method for simulations in
the canonical ensemble. Mol. Phys. 1984, 52, 255–268.

(36) Hoover, W. Canonical dynamics: equilibrium phase-space
distributions. Phys. ReV. A 1985, 31, 1695–1697.

(37) Parrinello, M.; Rahman, A. Polymorphic transitions in single
crystals: a new molecular dynamics method. J. Appl. Phys.
1981, 52, 7182–7190.

(38) Nosé, S.; Klein, M. L. Constant pressure molecular dynamics
for molecular systems. Mol. Phys. 1983, 50, 1055–1076.

(39) Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: an
n-log(n) method for ewald sums in large systems. J. Chem.
Phys. 1993, 98, 10089–10092.

(40) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee,
H.; Pedersen, L. A smooth particle mesh ewald potential.
J. Chem. Phys. 1995, 103, 8577–8592.

(41) Winger, M.; Trzesniak, D.; Baron, R.; van Gunsteren, W. F.
On using a too large integration time step in molecular
dynamics simulations of coarse-grained molecular models.
Phys. Chem. Chem. Phys. 2009, 11, 1934–1941.

(42) He, X.; Shinoda, W.; DeVane, R.; Klein, M. L. Exploring
the utility of coarse-grained water models for computational
studies of interfacial systems. Mol. Phys. 2010, 108, 2007–
2020.

(43) Herrero, C. P. Compressibility of solid helium. J. Phys.:
Condens. Matter 2008, 20, 295230.

(44) van Buuren, A. R.; Marrink, S. J.; Berendsen, H. J. C. A
molecular dynamics study of the decane/water interface. J.
Phys. Chem. 1993, 97, 9206–9212.

(45) Mark, A. E.; van Helden, S. P.; Smith, P. E.; Janssen, L. H. M.;
van Gunsteren, W. F. Convergence properties of free energy
calculations: alpha-cyclodextrin complexes as a case study.
J. Am. Chem. Soc. 1994, 116, 6293–6302.

(46) Beglov, D.; Roux, B. Finite representation of an infinite bulk
system: solvent boundary potential for computer simulations.
J. Chem. Phys. 1994, 100, 9050–9063.

(47) Luo, Y.; Roux, B. Simulation of osmotic pressure in concen-
trated aqueous salt solutions. J. Phys. Chem. Lett. 2010, 1,
183–189.

(48) Herrera, E. F.; Pantano, S. Salt induced asymmetry in
membrane simulations by partial restriction of ionic motion.
J. Chem. Phys. 2009, 130, 195105–195114.

(49) Lavery, R.; Sklenar, H. The definition of generalized helicoidal
parameters and of axis curvature for irregular nucleic acids.
J. Biomol. Struct. Dyn. 1988, 6, 63–91.

(50) Soper, A. K. The radial distribution functions of water and
ice from 673 K and at pressures up to 400 MPa. Chem. Phys.
2000, 258, 121–137.

(51) Kell, G. S. Density, thermal expansivity, and compressibility
of liquid water from 0° to 150°C: correlations and tables for
atmospheric pressure and saturation reviewed and expressed
on 1968 temperature scale. J. Chem. Eng. Data 1975, 20,
97–105.

(52) Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-
diffusion coefficients of water and six selected molecular
liquids for calibration in accurate H-1 NMR PFG measure-
ments. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.

(53) Marrink, S. J.; de Vries, A. H.; Mark, A. E. Coarse grained
model for semiquantitative lipid simulations. J. Phys. Chem.
B 2004, 108, 750–760.

(54) Groot, R. D.; Rabone, K. L. Mesoscopic simulation of cell
membrane damage, morphology change and rupture by
nonionic surfactants. Biophys. J. 2001, 81, 725–736.

(55) The value of the permittivity can vary with the condition of
the simulation, size of the computational box, etc.

(56) Kusalik, P. G.; Svishchev, I. M. The spatial structure in liquid
water. Science 1994, 265, 1219–1221.

(57) van Maaren, P. J.; van der Spoel, D. Molecular dynamics of
water with novel shell-model potentials. J. Phys. Chem. B
2001, 105, 2618–2626.

(58) van der Spoel, D.; van Maaren, P. J.; Berendsen, H. J. C. A
systematic study of water models for molecular simulation:
derivation of water models optimized for use with a reaction
field. J. Chem. Phys. 1998, 108, 10220–10230.

(59) Mahoney, M. W.; Jorgensen, W. L. Diffusion constant of the
TIP5P model of liquid water. J. Chem. Phys. 2001, 114, 363–
366.

(60) Yu, H.; van Gunsteren, W. F. Charge-on-spring polarizable
water models revisited: from water clusters to liquid water to
ice. J. Chem. Phys. 2004, 121, 9549–9564.

(61) Yu, H.; Hansson, T.; van Gunsteren, W. F. Development of
a simple self-consistent polarizable model for liquid water.
J. Chem. Phys. 2003, 118, 221–234.

(62) Chen, F.; Smith, P. E. Simulated surface tensions of common
water models. J. Chem. Phys. 2007, 126, 221101–221104.

(63) Wang, H.; Junghans, C.; Kremer, K. Comparative atomistic
and coarse-grain study of water: what do we lose by coarse-
graining. Eur. Phys. J. E 2009, 28, 221–229.

3806 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Darré et al.
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Abstract: Computational modeling of biological systems is a rapidly evolving field that calls for
methods that are able to allow for extensive sampling with systems consisting of thousands of atoms.
Semiempirical quantum chemical (SE) methods are a promising tool to aid with this, but the rather
bad performance of standard SE methods for noncovalent interactions is clearly a limiting factor.
Enhancing SE methods with empirical corrections for dispersion and hydrogen-bonding interactions
was found to be a big improvement, but for the hydrogen-bonding corrections the drawback of
breaking down in the case of substantial changes to the hydrogen bond, e.g., proton transfer, posed
a serious limitation for its general applicability. This work presents a further improved hydrogen-
bonding correction that can be generally included in parameter fitting procedures, as it does not
suffer from the conceptual flaws of previous approaches: hydrogen bonds are now treated as an
interaction term between electronegative acceptor and donor atoms, “weighted” by a function of the
position of H atoms between them, and multiplied with a damping function to correct the short- and
long-range behavior. The performance of the new approach is evaluated for PM6, AM1, OM3, and
SCC-DFTB as well as several force-field (FF) methods for a number of standard benchmark sets
with hydrogen-bonded systems. The new approach is found to reach the same accuracy as the
second-generation hydrogen-bonding correction with less parameters, while it avoids among other
issues the conceptual problem with electronic structure changes. SE methods augmented this way
reach the accuracy of DFT-D approaches for a large number of cases investigated, while still being
about 3 orders of magnitude faster. Moreover, the new correction scheme is transferable also to FF
methods that were shown to have serious problems with hydrogen-bonding interactions.

1. Introduction

Many promising applications of computational methods like
computer-aided drug design are related to large-scale simula-
tions of biologically relevant molecular systems. While
significant successes have already been achieved, e.g., in
computer-aided drug lead generation and optimization,1,2 the
field is still confronted with serious challenges, especially
considering the effects of protein flexibility and solvation.3

As a possibly very valuable tool for tackling these problems,
semiempirical quantum chemical (SE) methods have come
into the focus of several groups in recent years.4-12 SE
methods offer a compromise between the accuracy of “full”

ab initio treatments and the speed of force field (FF)
approaches. This way, SE methods allow for extensive
sampling of large systems, while keeping the ability to
describe the effects of electronic structure changes. The latter
point is of high importance, because customary used FF point
charge models ignore effects such as charge transfer and
polarization13 that are likely to be quite important in
biomolecular modeling applications.14

But biomacromolecules are dominantly influenced by
noncovalent interactions like dispersion and hydrogen bond-
ing that generally need very high-level quantum chemical
methods to be modeled with sufficient accuracy.15 In this
sense, it comes to no surprise that standard SE methods
perform rather poorly for these types of interaction. A big* E-mail: mk642@cam.ac.uk and dgd@uni-muenster.de.
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step forward for the description of biomolecular systems with
SE methods was made with the inclusion of empirical
dispersion corrections (e.g., PM3-D, AM1-D16), similar to
the ones used for DFT (e.g., refs 17 and 18) methods. But
in contrast to DFT methods that perform acceptably well
for hydrogen-bonding interactions,19 SE methods remain as
deficient as commonly used FF approaches20 for systems
beyond pure dispersion interactions. While this disadvantage
has been known for many years21-24 and several attempts
to cure this remedy were successful up to a certain point,23-29

only the inclusion of force-field-type terms for empirical
hydrogen-bonding corrections was able to improve the
accuracy of SE methods to a level near that of DFT-D
approaches. Because of conceptual problems with the initial
PM630,31-based approach,32 the method was redesigned in a
physically more sound way and is now publicly available in
Mopac200933 as the “-DH2” add-on method. One remaining
major drawback of DH2 is the breakdown of the correction
in the case of an acceptor-atom change, a problem that is,
among other issues, addressed in the following.

2. Empirical H-Bonding Corrections for
Semiempirical Quantum Chemical Methods

First-Generation and Second-Generation Corrections.
The first-generation correction, termed “DH” and later on
“DH1”, (eq 1) made use of the charges (q) on the acceptor
(A) and hydrogen (H) atoms, the distance (r) between these
atoms, and a cosine term that promotes a 180° bonding
situation for the A · · ·H-D (with the donor atom D) angle:

This design led to a number of problems, with the
possibility of a large number of unphysical contributions to
the correction from nonexisting hydrogen bonds, e.g., through
the back of acceptor atoms, because the orientation of the
acceptor atom is not taken into account (see below for a
detailed discussion). Other problems include large discon-

tinuities (because only the attractive but not the repulsive
term is multiplied with the angular dependency), a high
number of unsystematic parameters, and unphysical cutoffs.

The second-generation correction (eq 2) is a complete
redesign of this approach, with the most important change
being the inclusion of the missing information about the
sterical arrangement of the acceptor side of the hydrogen
bonds (see ref 34 for a detailed explanation). This “H2”
correction uses the same distance r, the two angles A · · ·H-D
(termed Θ) and R2-A · · ·H (termed Φ, with R2 being a donor
“base atom”), and the corresponding three torsional angles,
of which only one directly influences the H-bond interaction
energy, R1R2A · · ·H (termed Ψ):

with φ and ψ as the deviations of the R2-A · · ·H angle and
R1R2A · · ·H torsion angle from the idealized optimal H-bond
values. This redesign also allowed for keeping terms and
parameters more physically sound (e.g., avoiding the above-
mentioned large discontinuities), led to a much smaller
number of now systematic parameters, and made the cor-
rection transferable to other SE methods. Large systematic
gains in accuracy for hydrogen-bonded complexes were
possible with only one overall parameter; the final accuracy
using eight fitted parameters reached the DFT-D level for a
large number of investigated cases.34

Figure 1 illustrates how important it is to go beyond a simple
cos(θ)n ansatz for the geometrical definition of hydrogen-bond
correction terms: even in a rather small system like the
Watson-Crick bound adenine/thymine base pair, the number
and impact of unphysical contributions (indicated in the picture
with black arrows) is quite large when the simple cos(θ)n term
is used. These contributions sum up to enormous interaction
energies for larger systems, as shown for a medium-sized
protein. Please note that our numbers should be considered
rather conservative estimates, because we already used a long-

Figure 1. Illustration of the importance to go beyond a simple cos(θ)n term for hydrogen-bonding correction terms. See the text
for further explanation.

EH-bond ) a[qA × qH

r2
× cos(θ) + b × cr] (1)

EH-bond ) [a ×
qA × qH

rb
+ c × dr] × cos(θ) × cos(φ) × cos(ψ)

(2)
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range damping function, so that no interactions beyond 10.5 Å
contribute to the shown values.

The major remaining drawback of the second-generation
correction is the kept direct dependence on the distance between
the hydrogen and the acceptor atom (and the corresponding
parametrization to acceptor atom types) that requires a constant
bonding situation between acceptor, hydrogen, and donor atoms,
making it (unlike the common empirical dispersion corrections)
a bond-type term, with all the disadvantages attached: if the
acceptor atom changes (e.g., in the case of proton transfer from
the donor to the acceptor), then the correction is likely to break
down (see below for example data). Other problems include
the need for charge derivatives for analytical gradient calcula-
tions (ignored in the published DH2 version, but on the order
of tenths of a kilocalorie per mole even for small systems in
the case of strong H bonds), a problematic repulsive term
including a distance cutoff to prevent problems with the
optimization of strong H bonds, and a partially adjusted
dispersion correction (with a modified C6 for sp3 carbon and a
changed van der Waals radius for hydrogen) that could now
profit from recent developments of dispersion corrections with
system-dependent C6 coefficients (something not addressed in
this paper, but under development). A final issue is the long-
range behavior of previously published hydrogen-bonding
corrections: As it is not generally clear what the exact long-
range behavior should be (among other reasons because
semiempirical methods already account to some extent for
hydrogen-bonding interactions), we think the most reasonable
thing to do is to design the correction to be of a rather short-
ranged nature. This seems to be the safest way to go in the
sense that no correction is safer than a correction from a huge
sum of very tiny and most likely wrong contributions.

Shortly before we finished our manuscript, Foster and
Sohlberg published another hydrogen-bonding correction
scheme for the SE method AM1, termed FS1,35 which they
compare to PM6-DH but unfortunately not to the likewise
earlier published DH2 scheme. FS1 has the same basic
outline as PM6-DH1, with the repulsive term replaced by a
damping function (as previously suggested as an alternative
approach for DH234) and the bond-type parametrization
replaced with four general, fitted parameters, which some-
what spoils the accuracy but partly solves the problem with
electronic structure changes. The authors nevertheless have
to admit that a safe treatment of such changes would need a
further modified (effectively doubled) version of their ansatz
and, therefore, do not recommend using their published
version in such cases. As we have tried a doubling of terms
for DH2 before publishing it, we believe to have good
reasons to question that such a modification will not further
diminish the accuracy of the FS1 scheme. Independently of
this issue, we consider the FS1 scheme to be a first-generation
hydrogen-bonding correction, because it does not take the
complete geometric information into account (and accord-
ingly suffers from all of the related problems), as discussed
above when comparing DH2 to the earlier PM6-DH1.

Third-Generation Correction. The third-generation cor-
rection (eq 3) does not make the assumption of a specific
acceptor/hydrogen/donor binding situation but instead takes
the hydrogen bond as a charge-independent atom-atom term

between two atoms capable of serving as an acceptor or
donor part (e.g., O, N), weighted by a function that accounts
for the steric arrangement of the two fragments to each other
and the preferably favorable positioning of a H atom
somewhere between them (a definition of coordinates
analogous to the above, with A and B being the two possible
acceptor/donor atoms and CA and CB the corresponding
hydrogen-bonding correction parameters from Table 1 for
semiempirical and Table 2 for force field methods), multi-
plied with a damping function to correct the short- and long-
range behaviors:

The damping functions can be chosen as a “safe bet”, so
that no fitting is necessary for them (albeit the long-range
cutoff could in principle be taken as a fit parameter, e.g., if
it turns out that the structures of very large molecules are
found to be too dense): the fdamp function is switched on
between a donor-acceptor distance of 2.3 and 2.5 Å (safe
choice for the assumption of no H bonds below 2.5 Å) and
slowly switched off between 3.5 and 10.5 Å (safe choice
for the assumption of full H-bond strength up to 3.5 Å and
no strength anymore at three times this distance). Figure 2
shows this damping function and a resulting example energy
profile for the overall correction. The fbond function brings
the correction to zero if the hydrogen wanders away too far
from both electronegative atoms (with rXH being the smaller
one of the two distances rAH and rBH): It is switched off
between 1.15 and 1.25 Å (safe choice for the assumption of
a maximum distance of 1.15 for a covalent hydrogen bond).

Table 1. Hydrogen-Bonding Correction Parameters Celement

for Semiempirical QM Methods

element OM3 PM6 AM1 DFTB

N -0.05 -0.16 -0.29 -0.21
O -0.07 -0.12 -0.29 -0.08

Table 2. Hydrogen-Bonding Correction Parameters Celement

for Force Field Methods

element MM2* MM3* AMBER* OPLS* OPLSAA MMFF94

N -0.64 -0.63 -0.21 -0.24 -0.25 -0.21
O -0.08 -0.17 -0.03 -0.00 -0.00 -0.05

EH-bond )
CAB

rAB
2

· fgeom × fdamp (3)

fgeom ) cos(θA)2 × cos(φA)2 × cos(ψA)2 × cos(φB)2 ×

cos(ψB)2 × fbond (4)

fbond ) 1 - 1
1 + exp[-60(rXH/1.2 - 1)]

(5)

fdamp ) ( 1
1 + exp[-100(rAB/2.4 - 1)]) ×

(1 - 1
1 + exp[-10(rAB/7.0 - 1)]) (6)

CAB )
CA + CB

2
(7)
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The (torsion) angles of the fgeom function are defined
similarly to those of the DH2 correction,34 with φ and ψ
now symmetrically used for both the donor and acceptor
atoms. This ansatz is not a doubling or “double-potential”
version of the DH2 correction (which was tested by the
author before the publication of DH2 but found to be quite
problematic): the important difference is the change from
the use of the hydrogen-acceptor distance (with its require-
ment of a hydrogen-donor bond definition) to the core-core
interaction picture that results from using the donor-acceptor
distance instead of the hydrogen-acceptor distance. Through
this change, the implicit hydrogen-donor bond definition
(also still present in the recently published AM1-FS1 method,
see above) can be avoided. The target angles can nevertheless
be kept as for the second-generation correction,34 which of
course has to be the case for “text-book” ideal values.

This way, the new scheme accounts for the major drawback
of the (first- and) second-generation correction, i.e., the problem
of a substantial change to the hydrogen bond, but several
additional benefits are gained as side effects: while keeping the
high accuracy of the “DH2” scheme, the number of fitted
parameters can be reduced from eight to two. As charges are
no longer used, no charge-derivative terms are needed for the
analytical gradient. The repulsive term can be replaced by a
damping function, and cutoff distances are no longer needed
for an accurate description of nonequilibrium structures. (In the
development of DH2, an unphysical short-distance cutoff was
introduced to avoid problems with very strong hydrogen bonds
where the correction was much too high, because strong partial
charges and short H-bond distances both increase the value of
the DH2 correction.) At the same time, the damping function

greatly improves the long-range behavior in the sense that we
think it to be preferable to have no (rather than very likely
wrong) long-range contributions from hydrogen-bonding cor-
rections. Finally, we found that the new scheme is also well
suited for the application to force field methods. This is of great
importance as it was recently shown how strongly common
force fields underestimate hydrogen-bonding interactions (while
they actually perform very well for dispersion interactions)20

and a possible improvement, e.g., of water models, could have
major impact for biomolecular modeling in general. We should
mention though that while our straightforward implementation
of the third-generation correction is about 2 orders of magnitude
faster than the underlying semiempirical methods for midsized
proteins (as is “DH2”), the application to force fields will require
a more sophisticated approach to avoid slowing down the force
field calculations by about 1 order of magnitude.

The new correction was parametrized on the hydrogen-
bonded complexes of the S26 + S22x4 set for the AM1,
PM6, OM3, and SCC-DFTB methods (all enhanced with
standard dispersion corrections, see Table 1) and of the S22
set only for several FF methods (see Table 2). Optimization
of the parameters with respect to the mean unsigned error
(MUE) and the root-mean-square error (RMSE) over all
reactions led to nearly identical parameter values; the final
parameters are taken from the MUE optimizations. We call
our approach “H+”, to indicate the conceptual difference
of “DH+” from the first- and second-generation “DHn”
approach. Table 3 summarizes the developments from the
first to the second and third generation H-bonding corrections
explained in this section.

Figure 2. The fdamp function (left) and an example for the overall correction energy (right).

Table 3. Comparison of First-, Second-, and Third-Generation Hydrogen-Bonding Correction Schemes

generation scheme transferability generalitya
full geometric
informationb

safe long-range
behaviorc

no charges
usedd

number of
fitted

parameters

1 DH1 PM6 no no no no 24
FS1 AM1 yes/noe no nof no 4

2 DH2 SE methods no yes no no 8
3 DH+ SE and FF methods yes yes yes yes 2

a Robust scheme, does not break down for electronic structure changes, can be generally included in parameter fits for new
semiempirical QM (SE) and force field (FF) methods. b Uses full geometric information, not just a cosine term, which is likely to lead to
problems with larger systems (see Figure 1). c Shows safe long-range behavior by avoiding huge sums of very small (and likely wrong)
contributions. d Allows for affordable analytical gradients, as no gradients with respect to charges are required. e Usage for proton transfer
“effectively possible” in a suggested, modified (doubled) version, but not recommended by the authors of AM1-FS1. f Damping function with
bad long-range behavior (significantly above zero at long distances).
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3. Computational Details

Semiempirical PM6 and AM1 calculations applying the
MOZYME algorithm were done with MOPAC2009,33 OM3
calculations with MNDO2005, and SCC-DFTB calculations
with DFTB+.36 AM1-D* refers to standard AM116 with a
standard Jurecka-type18 empirical dispersion correction (see
ref 34 for details), not AM1-D, which is additionally based
on a refit of 18 AM1 parameters. B3-LYP37,38 DFT calcula-
tions with empirical dispersion corrections of the Jurecka
type18 were done with Turbomole 5.939 using TZVP40 and
QZVP41 Gaussian AO basis sets and the RI approximation42,43

for two-electron integrals.

Energies and analytical gradients for our new “H+”
hydrogen-bonding correction are implemented as a stand-
alone program that is freely available from the author upon
request. Preparations to make the correction available within
the open source FF code GROMACS are underway.

4. Results and Discussion

Tables 4-9 show results of OM3, PM6, AM1, and SCC-
DFTB (shortened to “DFTB” in the tables) calculations with
dispersion and second- and third-generation hydrogen-
bonding corrections for the hydrogen-bonded complexes of
the S2644 (Table 4, again in Table 5 with structures optimized
at each level of theory) and S26 + S22x434 (Table 6)
benchmark sets; the PM6-DH1 training set of 105 small
hydrogen-bonded complexes32 (Table 7); the 37 noncharged,
H-bonded DNA base pair complexes from the JSCH2005
set15 (Table 8); and the 13 noncharged, H-bonded peptide
structures from the JSCH2005 test set (Table 9). (We do
not supply DFTB data in Table 5 because our interface does
not allow for DFTB geometry optimizations with DH+ yet.)
The geometries of these benchmarks are optimized at the
MP2/cc-pVTZ level or higher (S22, S26, S22x4, PM6-DH1
training set, JSCH2005 partly) or represent experimental data
(JSCH2005 partly); see the references given above for details.

Table 4. Results for the H-Bonded Complexes of the S26 Seta

OM3-D -DH2 -DH+ PM6-D -DH2 -DH+ AM1-Db -DH2 -DH+ DFTB-D -DH2 -DH+

MSE -1.75 -0.66 -0.36 -2.82 0.03 0.13 -5.58 0.25 0.81 -2.86 0.14 -0.11
MUE 1.75 0.66 0.62 2.82 0.19 0.66 5.58 0.73 2.28 2.86 0.88 1.01
RMSE 2.22 0.96 0.84 3.56 0.27 0.88 7.57 0.95 2.60 3.15 1.01 1.20
∆ 5.16 2.35 3.10 6.20 0.92 3.18 17.30 3.33 8.58 4.88 2.93 3.69

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b AM1-D refers to
standard AM1 with a standard empirical dispersion correction, unlike AM1-D.

Table 5. Results for the H-Bonded Complexes of the S26 Set, Optimized with Each Methoda

OM3- Db -DH 2b -DH+b PM6-D -DH2 -DH+ AM1-Dc -DH2 DH+

MSE 4.74 5.28 4.48 -2.63 0.68 0.45 -3.68 1.16 2.31
MUE 5.18 6.18 5.03 2.63 1.10 0.75 3.68 1.21 2.42
RMSE 11.52 12.17 7.70 3.20 1.56 0.91 5.02 1.56 2.84
∆ 38.83 40.56 20.20 4.94 5.36 2.85 10.45 3.43 5.80

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b Already, the OM3
method itself (without D or H corrections) has a serious problem with the very strongly bound formic acid dimer, which is the main reason
why the errors are much larger than for the other examples. c Refers to standard AM1 with a standard empirical dispersion correction, unlike
AM1-D.

Table 6. Results for the H-Bonded Complexes of the S26 and S22x4 Setsa

OM3-D -DH2 -DH+ PM6-D -DH2 -DH+ AM1-Db -DH2 -DH+ DFTB-D -DH2 -DH+

MSE 1.25 0.21 -0.02 2.35 0.01 -0.39 4.91 0.27 -0.97 2.83 0.33 0.22
MUE 1.45 0.91 1.03 2.35 0.24 0.81 4.91 1.42 2.88 2.83 0.74 0.80
RMSE 2.05 1.36 1.46 3.20 0.34 1.00 7.76 2.55 3.54 3.33 0.89 1.01
∆ 7.92 6.30 7.45 7.88 1.65 4.14 26.18 14.38 15.46 8.12 3.19 4.51

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b Refers to standard
AM1 with a standard empirical dispersion correction, unlike AM1-D.

Table 7. Results for the 105 Small, H-Bonded Complexes of the PM6-DH1 Fit Seta

OM3-D -DH2 -DH+ PM6-D -DH2 -DH+ AM1-Db -DH2 -DH+ DFTB-D -DH2 -DH+

MSE -0.88 -0.51 0.03 -1.66 -0.43 0.46 -2.55 -0.12 1.85 -2.33 -0.40 -0.14
MUE 0.91 0.66 0.46 1.77 1.15 1.21 2.71 1.59 2.40 2.36 0.85 1.07
RMSE 1.14 0.86 0.59 2.35 1.54 1.44 4.04 2.12 2.87 2.79 1.06 1.44
∆ 6.52 4.48 3.71 9.61 7.37 6.18 22.64 12.14 13.08 10.47 5.15 8.64

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b Refers to standard
AM1 with a standard empirical dispersion correction, unlike AM1-D.
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Structures and reference energies for these test sets can be
obtained online from the Benchmark Energy and Geometry
DataBase BEGDB, see http://www.begdb.com. Mean signed
(MSE), mean unsigned (MUEs), and root-mean-square errors
(RMSE) as well as the maximum error span (∆) with respect
to the benchmark CCSD(T)/CBS interaction energies are
given in kilocalories per mole. Table 10 gives the same
statistical error measures for the hydrogen-bonded complexes
of the S22 set, this time for a number of force field methods
without and with augmentation by our third-generation
hydrogen-bonding correction. Force field interaction energies
for the “frozen” geometries of the S22 and S22x4 sets were
kindly provided by the authors of ref 20, from their extensive
study on the performance of force field methods for nonco-
valent interactions. The force fields are the MacroModel
implementations of MM2*,45 MM3*,46 AMBER*,47-49 and
OPLS*50 and native versions of OPLSAA51 and MMFF94.52

Further details can be found in the original publication.20

Perusing Tables 4-9, the following conclusions can be
drawn: All six tables illustrate that even dispersion-corrected
semiempirical QM methods perform quite badly for hydrogen-
bonding interactions (a known issue, see Introduction). While
OM3 is doing rather well, AM1 especially gives large errors
for H-bond interaction energies. Tables 4 and 6-9 also show
that the inclusion of the second-generation “H2” correction
(in combination with standard dispersion corrections such
as “DH2”) consistently improves the accuracy of all methods,
but unfortunately DH2 suffers from several conceptual
problems (as explained in the theory section above). Our
new “H+” correction (in combination with standard disper-
sion corrections such as “DH+”) is able to reach the same
overall accuracy as the DH2 correction, while it avoids all

of the conceptual problems connected with the DH2 ansatz:
Tables 4 and 7-9 show that, e.g., MUEs are improved by a
factor of 1.5 to 3 for all sets (with significantly strong
H-bonding interactions, unlike the peptide set in Table 9)
and methods.

That this is also the case for nonequilibrium structures can
be seen in Table 6, and that this conclusion still holds for
structures optimized at the corresponding level of theory is
shown in Table 5. [The used benchmark sets are designed
to be used with the given benchmark geometries, because
the goal is a correct energetic description within the correct
geometrical arrangement. For a comparison of interaction
energies of structures optimized at different levels, it is
necessary to carefully check and compare all final geometries
and resulting energetic effects. To allow for comparison with
earlier work, we present this data here for the S22 setswhere
for both DH2 and DH+ no substantial change of binding
motifs occurssbut stick with the intended use of the
benchmark sets in the other cases.]

While the overall accuracies of DH2 and DH+ are very
similar, DH2 seems to do better for AM1, while DH+ seems
to be better suited for OM3 (see Tables 7 and 8). The
performance for DFTB is better with DH2 for the DH1
training set (Table 7) but better with DH+ for the JSCH2005
set, presumably because the latter one includes multiple
hydrogen bonds. In addition, while DH2 works exceptionally
well for the S26 and S26+S22x4 fit sets (as three parameters
for each method were added to achieve exactly this goal),
this additional gain in accuracy is not transferred to systems
beyond the fit sets, e.g., the diverse hydrogen-bonded
structures of the PM6-DH1 set (Table 7), where DH+ is at
the same level, and especially not the DNA base pairs (Table

Table 8. Results for the JSCH2005 H-Bonded DNA Base Pairsa

OM3-D -DH2 -DH+ PM6-D -DH2 -DH+ AM1-Db -DH2 -DH+ DFTB-D -DH2 -DH+

MSE -2.41 -0.81 -0.49 -6.10 -0.54 -0.87 -10.16 0.11 -0.05 -5.49 2.64 0.90
MUE 2.50 1.22 1.02 6.10 1.76 1.35 10.16 2.29 1.68 5.49 3.06 1.64
RMSE 2.79 1.44 1.29 6.30 2.23 1.59 10.91 2.87 2.40 5.80 3.48 1.97
∆ 6.81 4.52 5.74 7.67 7.94 5.94 16.31 12.46 11.78 6.85 8.53 7.20

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b Refers to standard
AM1 with a standard empirical dispersion correction, unlike AM1-D.

Table 9. Results for the JSCH2005 H-Bonded Peptidesa

OM3-D -DH2 -DH+ PM6-D -DH2 -DH+ AM1-Db -DH2 -DH+ DFTB-D -DH2 -DH+

MSE 0.33 0.36 0.36 -0.07 -0.00 -0.00 1.37 1.45 1.50 -0.84 -0.75 -0.76
MUE 0.60 0.62 0.62 0.65 0.69 0.68 1.49 1.56 1.60 0.92 0.83 0.85
RMSE 0.80 0.81 0.82 0.85 0.88 0.86 1.94 2.03 2.11 1.07 0.98 0.99
∆ 2.81 2.79 2.80 3.45 3.42 3.40 4.30 4.27 4.60 2.91 2.84 2.85

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole. b Refers to standard
AM1 with a standard empirical dispersion correction, unlike AM1-D.

Table 10. Results for the H-Bonded Complexes of the S22 Seta

MM2* -H+ MM3* -H+ AMBER* -H+ OPLS* -H+ OPLSAA -H+ MMFF94 -H+ B3LYP-D/TZVP

MSE -8.77 -0.63 -10.90 -1.37 -3.47 -0.74 -2.76 -0.20 -3.27 -0.61 -3.01 0.05 0.74
MUE 8.77 2.12 10.90 3.61 3.93 2.63 3.30 2.03 3.55 1.73 3.15 0.84 0.74
RMSE 10.68 2.70 13.13 5.00 5.29 3.60 4.42 2.57 4.49 2.53 3.88 1.19 0.84
∆ -17.18 -8.75 -19.07 -16.17 -11.65 -9.83 -9.10 -8.09 -8.46 -7.70 -7.57 -4.30 1.17

a Mean signed (MSE), mean unsigned (MUEs), and root-mean-square errors (RMSE) as well as the maximum error span (∆) with
respect to the benchmark CCSD(T)/CBS interaction energies are presented. All values are in kilocalories per mole.
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8), where DH+ (two fit parameters) even outperforms DH2
(eight fit parameters). The peptide systems in Table 9 were
added to show that the DH+ correction (as the DH2
correction) does not worsen the energies of complexes with
very weak hydrogen bonds by introducing unphysical
contributions.

Table 10 shows that the overall good performance of the
“H+” correction is also transferable to FF methods, with
MUEs for the hydrogen-bonded systems of the S22 set nearly
comparable to much more sophisticated computational ap-
proaches. Tests additionally including the nonequilibrium
structures from the S22x4 set showed a reduction of the mean
unsigned error (MUE) from 6.5 to 2.5 kcal/mol for MM2*
and from 2.1 to 0.9 kcal/mol for MMFF94, quite comparable
to the gain shown in Table 10 for equilibrium structures only.
More thorough studies are in preparation but are beyond the
scope of this work.

For a large number of investigated cases, the new “DH+”
correction reaches the accuracy of DFT-D approaches, while
being several orders of magnitude faster and now free of
the conceptual problems of the older DH2 correction scheme.
This is again summarized in Table 11 where different force
field and semiempirical QM methods as well as a “standard”
DFT-D approach are compared for the MUE and average
error per H bond over the hydrogen-bonded systems of the
S26 set (s22 set for force field methods).

To illustrate the practical applicability of DH+ to model
proton transfer reactions, we have looked at the simple model
reaction of methanol and ammonia visualized in Figure 3.
Starting from a MP2/TZVP optimized structure, all coordi-
nates are kept frozen except the O-H distance, which is
varied between 1.0 and 1.9 Å in steps of 0.025 Å, corre-
sponding to a proton transfer from methanol to ammonia.

Figures 4 and 5 show the resulting proton transfer
energetics for OM3 and PM6 without and with the DH2 and
DH+ corrections, illustrating that in opposition to DH2,
DH+ does not break down in the case of proton transfer.
Apart from that, the impact of both corrections is small in
comparison with the overall reaction energy, with a cor-

Table 11. Results for Several Methods for the
Hydrogen-Bonded Complexes of the S26 Set (S22 Set for
Force Field Methods)a

methods MUE average error per H bond

MM2* 8.77 5.0
MM2*-H+ 2.12 1.2
MMFF94 3.15 1.8
MMFF94-H+ 0.84 0.5
SCC-DFTB-D 1.75 1.2
SCC-DFTB-DH+ 1.01 0.7
PM6-D 2.82 1.9
PM6-DH+ 0.66 0.4
OM3-D 1.75 1.2
OM3-DH+ 0.62 0.4
B3LYP-D 0.74 0.5

a Mean unsigned errors (MUEs) and average errors per H bond
with respect to the benchmark CCSD(T)/CBS interaction energies
are presented. DFT methods with TZVP basis sets. All values in
kiloclaories per mole.

Figure 3. Simple Model System for Proton Transfer.

Figure 4. OM3(-DH2/-DH+) proton transfer energetics for
the model system from Figure 3, with MP2/QZVP reference
data (energies at 1 Å taken as a reference point).

Figure 5. PM6(-DH2/-DH+) proton transfer energetics for the
model system from Figure 3, with MP2/QZVP reference data
(energies at 1 Å taken as a reference point).

Figure 6. DH2 and DH+ hydrogen-bonding correction ener-
gies for the model system from Figure 3 (with parametrization
corresponding to the OM3 and PM6 methods).
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respondingly small, indirect effect on the “barrier” height
through the energetic lowering of reactants and products.
Figure 6 shows a direct comparison of the DH2 and DH+
correction energies for our simple model reaction (using the
corresponding the OM3 and PM6 parameters), illustrating
the problems of DH2 and the conceptual improvement of
DH+ in more detail.

Also of some importance is the performance of DH+ for
hydrogen-bonding cooperativity, because such a type of
cooperativity has been shown to exist in � sheets, which
makes it important for the accurate modeling of large
proteins, where the stability of secondary structures might
be influenced.53 Table 12 shows interaction energies for
selected hydrogen bonds in linear formamide chains of
lengths two and six, a model system taken from the work of
Dannenberg and co-workers.53,54 Besides OM3(-DH2/DH+)
and PM6(-DH2/DH+) data, DFT and MP2 reference values
are given. (Following ref 53, interaction energies are
calculated by simple subtraction; e.g., the energy of the
terminal H-bond in the hexamer is taken to be the energy of
the hexamer less the combined energies of the pentamer and
the monomer.)

First of all, Table 12 illustrates the strong cooperative
nature of the H-bond interactions (emphasized already in the
above-mentioned work by Dannenberg); i.e., the central
interaction in the hexamer is predicted to be nearly two times
as much as the dimer interaction. Comparing OM3 and PM6
with MP2, it looks as if semiempirical methods seem to be
rather well capable of modeling such hydrogen-bond coop-
erativity effects, especially also concerning the ratio of
interaction strengths (with a factor of 1.6 and 1.8 between
the dimer and the central hexamer H-bond strength for all
approaches). DH2 and DH+ show again a very similar
performance, systematically improving the underlying SE
methods, with DH2 being slightly more advantageous at least
for PM6, presumably because DH2 has one parameter
specially dedicated to amide interactions and fitted to the
formamide dimer. Overall, empirical correction schemes
seem to also work surprisingly well with semiempirical QM
methods for hydrogen-bonding cooperativity effects.

5. Conclusions

This work presents a further improved, “third-generation”
hydrogen-bonding correction scheme that can now be gener-
ally included in parameter fits of semiempirical QM and force
field methods, as it does not suffer any longer from several
conceptual limitations of previous approaches in this direc-
tion: hydrogen bonds are now treated as an interaction term
between electronegative acceptor and donor atoms, “weighted”
by a function of the positioning of H atoms between them.
This way, the new correction scheme improves over existing

ones with regard to the following issues: Electronic structure
change (e.g., proton transfer) becomes generally possible; a
safe long-range behavior is enforced; exact analytical
gradients are affordable;, transferability to force field methods
is achieved, and straightforward extendability for other
hydrogen- (and halogen-)bonding types is given; and the
same (high) overall accuracy can be achieved with signifi-
cantly less parametrization. Our new correction scheme
consistently improves the accuracy of the semiempirical QM
methods PM6, AM1, OM3, and SCC-DFTB as well as the
MM2*, MM3*, AMBER*, OPLS*, OPLSAA, and MMFF94
force field methods for several benchmark sets of hydrogen-
bonding interactions by up to 1 order of magnitude at the
cost of a force-field-type calculation.
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Abstract: The study investigates electronic structure and gas-phase energetics of the DNA
sugar-phosphate backbone via advanced quantum chemical (QM) methods. The analysis
has been carried out on biologically relevant backbone conformations composed of 11
canonical BI-DNA structures, 8 pathological structures with R/γ torsion angles in the g+/t
region, and 3 real noncanonical γ-trans structures occurring in the loop region of guanine
quadruplex DNA. The influence of backbone conformation on the intrinsic energetics was
primarily studied using a model system consisting of two sugar moieties linked together via
a phosphodiester bond (SPSOM model). To get the conformation of the studied system
fully under control, for each calculation we have frozen majority of the dihedral angles to
their target values. CCSD(T) energies extrapolated to the complete basis set were utilized
as reference values. However, the calculations show that inclusion of higher-order electron
correlation effects for this system is not crucial and complete basis set second-order
perturbation calculations are sufficiently accurate. The reference QM data are used to assess
performance of 10 contemporary density functionals with the best performance delivered
by the PBE-D/TZVPP combination along with the Grimme’s dispersion correction, and by
the TPSS-D/6-311++G(3df,3pd) augmented by Jurečka’s dispersion term. In addition, the
QM calculations are compared to molecular mechanics (MM) model based on the Cornell
et al. force field. The destabilization of the pathological g+/t conformers with respect to the
reference canonical structure and the network of intramolecular CH · · ·O interactions were
investigated by means of natural bond orbital analysis (NBO) and atoms-in-molecules (AIM)
Bader analysis. Finally, four additional model systems of different sizes were assessed by
comparing their energetics to that of the SPSOM system. Energetics of smaller MOSPM
model consisting of a sugar moiety linked to a phosphate group and capped with methyl
and methoxy group on the 5′- and 3′-ends, respectively, is fairly similar to that of SPSOM,
while the role of undesired intramolecular interactions is diminished.
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Introduction

Nucleic acids (NA; DNA and RNA) consist of linear chains
of covalently bound sugar-phosphate units to which aro-
matic nucleic acid bases are attached. Nucleic acids form
an astonishing variability of tertiary structures (ranging from
simple double helices to complex ribonucleoprotein particles)
that determine their function. Structural dynamics of nucleic
acids result from delicate balance of numerous contributions.
Among them, conformational preferences of the sugar-
phosphate backbone belong to the most important ones. The
sugar-phosphate backbone is chemically monotonous (se-
quence-independent). It contains a number of consecutive
single bonds, which allow a substantial freedom for dihedral
rotations. Thus, it has often been assumed that the backbone
plays a rather passive role in structuring nucleic acids, while
interactions involving the nucleobases are decisive (the base-
centered view of NA structure).1,2 On the other hand, there
have also been suggestions that the internal backbone
conformational preferences are decisively important.3-5

The conformation of the backbone is defined by a number
of torsion angles called R, �, γ, δ, ε, and � (Figure 1). In
addition to these, the precise conformation of inherently
nonplanar (puckered) five-membered deoxyribose sugar ring
is fully specified by five internal torsions τ0-τ4, the set of
which can be simplified to only two internal degrees of
freedom (pseudorotation P and amplitude τmax). As the
individual bases in nucleic acids are considered to be flat,
the last degree of freedom in nucleotide is represented by
the glycosidic bond linking a deoxyribose sugar and a base,
the rotation around which is characterized by the torsion
angle �. Steric restrictions confine the values of these
structural descriptors to discrete ranges.6 A common conven-
tion for describing these backbone angles is to term values
of ∼60° as gauche+ (g+), ∼ -60° as gauche- (g-), and
∼180° as trans (t). The typical (i.e., average) values of torsion
angles of individual conformers can be obtained by careful
analysis of NMR or crystal structures.7 Such studies identify
not only ranges individual torsions can adopt, but also
describe numerous correlations involving pairs of the back-
bone torsion angles, as well as sugar pucker and glycosidic
angle. The X-ray database contains hundreds of high-
resolution DNA X-ray structures revealing thousands of
individual dinucleotide backbone topologies. Using advanced
bioinformatics tools, it is possible to cluster the backbone
topologies into typical conformation families and to deter-
mine their representative (i.e., averaged) geometries with a
high degree of confidence.7 The existence of correlations is
important as it means that the atomic motions in nucleotides
follow concerted pattern of interdependence. Between the
most important correlations belong the correlation between

sugar pucker and glycosidic angle �, the correlation between
γ and R torsions, and the correlation between sugar pucker
and δ angle (this correlation is rather strong, as it is given
by the fact that one of the sugar internal torsions represents
the rotation around the same bond as does δ).

Because of the inherent conformational flexibility of the
polynucleotide backbone, there exists a wide range of
different double helical conformations. The most common
form is the antiparallel right-handed B-DNA double helix.8

This conformation, often referred to as canonical one, is
characterized by the following set of typical torsion angles:
R ) 299° (g-), � ) 179° (t), γ ) 48° (g+), δ ) 133°, ε )
182° (t), and � ) 263°. Another possible right-handed form,
A-DNA, is similar to B-DNA, but with different sugar
conformation leading to different base position with respect
to the helical axis. Z-DNA, a left-handed form, was also
prepared, although its biological relevance is still the subject
of investigation.9 The structural variability of DNA is critical
for recognition between DNA and proteins, which plays a
crucial role in such essential processes as replication or
transcription. Characterization of the backbone conforma-
tional space is therefore highly important for understanding
of DNA recognition.

However, while intrinsic energetics of interbase interac-
tions has been widely studied,10,11 very little is known about
the backbone electronic structure and energetics. Their study
is considerably more difficult12-22 due to the high flexibility
and various correlations between the individual torsion
angles. The ability to uniquely assign and compare energies
of individual biomolecular conformers is indispensable to
clarify their conformational preferences. The intrinsic con-
formational preferences are established by analysis of the
relation between molecular structures and molecular energies.
Using computational methods, we can derive potential energy
surfaces (PES) by assigning corresponding electronic energy
to each single geometry, and thus evaluating energy as an
unambiguous function of the molecular structure. The
resultant potential function that drives a biomolecular system
arrangement in natural environment can be generally ex-
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Figure 1. Atomic numbering and definition of the deoxyri-
bonucleotide backbone torsion angles. The nucleotide back-
bone is described by the P-O5′-C5′-C4′-C3′-O3′ linkage.
The torsion angles represent the rotation around the given
bond. It is conventional to describe the backbone torsion
angles of ∼60° as gauche+ (g+), of ∼300° as gauche- (g-),
and of ∼180° as trans (t). The standard progression of NA
chain is the 5′f3′ direction, which is from the left to the right
in this particular figure.
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pressed as a sum of three distinct terms. The first term,
intrinsic electronic energy of the system in vacuum, can be
acquired exclusively via a highly accurate ab initio QM
treatment. The intrinsic energy component can also be
approximated by means of balanced MM force fields, where
the electronic effects are mimicked by effective classical
potential functions. The second contribution to the potential
energy function arises from the interaction of the studied
molecular entity with its natural environment, that is, mainly
the solvation effects and the overall context of the NA
molecule. The last term represents coupling between the
intrinsic and environmental contributions.

The present work is focused on the first energy component,
for it influences the resulting conformational space occupa-
tion to a considerable extent. We provide an extensive QM
characterization of the intrinsic conformational preferences
of the sugar-phosphate unit of DNA. It is, however,
important to bear in mind that the environment and coupling
terms significantly affect the resulting energetics too, and
thus should not be omitted when predicting structural
preferences in real environments. This is the main limitation
of our study.

The present study has several key features. First, we derive
reference QM data; that is, we push the theoretical calcula-
tions to the highest limits achievable by contemporary
computational tools. These calculations are then used for
comparison with a wide range of less expensive QM methods
and also variants of the Cornell et al. MM force field,23 to
assess their performance and to obtain basic physical
chemistry insights into the systems under study.

We compare five model systems of different complexity,
to establish sensitivity of the results to the choice of the
model system. The very first critical step in a theoretical
investigation of biologically relevant macromolecules is to
select a convenient model system. The size and the overall
structural complexity of biological units to be described
inherently delimit the set of appropriate model systems. The
model should be large enough to capture all important
conformational and electronic characteristics of the studied
biomolecule. Too large model can make rigorous ab initio
high-level QM investigation intractable, while too small
model system may be chemically irrelevant. As the backbone
conformation is unambiguously determined by six strongly
coupled torsion angles R, �, γ, δ, ε, and � (Figure 1),7 the
energetic assessment of the complete conformational space
constitutes a complex six-dimensional problem. Furthermore,
the sugar pucker defined by two independent variables and
coupled to a certain degree with the δ torsion angle also
influences PES of the model compound. In addition, the
correct description of the electronic distribution along the
negatively charged backbone is a rather demanding task. To
properly analyze the polarizable anionic nature of the
backbone, at least moderate size basis set with diffuse
functions must be utilized. This makes high-level QM
computations difficult even for quite small (e.g., one nucle-
otide) DNA fragments. Besides, the diffuse electron density
due to anionic character causes slower density matrix
convergence. However, there is yet another reason that
complicates investigations of larger model systems, even

when they are computationally tractable per se. The larger
is the model system, the more prone it is to adopt geometries
that are biased, for example, by intramolecular H-bonds and
other interactions that are not relevant to complete solvated
biomolecules. The complexity of the conformational spaces
increases dramatically with the size of the system. Additional
issues that preclude studies of larger systems are uncom-
pensated charges of multiple phosphate groups that would
dominate the gas-phase electrostatics and also an artifact
known as intramolecular basis set superposition error (BSSE;
for more details, see the QM calculations paragraph below).

In contrast to our preceding study,12 we modified the
computations in such a way that basically we always keep
all backbone dihedral angles frozen at predefined values. This
has been necessitated by the fact that when freezing only
very few dihedral angles the remaining free dihedral angles
can adopt numerous combinations as local minima. This
substantially biases conformational scans and often leads to
unrealistic geometries.

We concentrate our efforts to three DNA backbone
geometrical substates: canonical B-DNA conformation and
two conformations with γ angle in trans and R angle in
gauche+ region. The first one corresponds to R/γ topology
that normally should not occur in free B-DNA;24 however,
it accumulated in longer simulations with an earlier version
of the Cornell et al. MM force field. With the original
parametrization (ff9423 and ff9925 force fields), irreversible
sequence-independent R/γ flips occur in long molecular
dynamics (MD) simulations of B-DNA duplexes.26-28 The
accumulation of R/γ transitions then causes entire B-DNA
structure degradation.29 The backbone γ torsional profile was
recently reparametrized in the parmbsc0 force field,29 which
allows for long time scale simulations of B-DNA duplexes
without any significant loss of helical structure. Although
the parmbsc0 force field represents a decisive progress in
MD simulations of DNA, further refinement would be still
useful as not all imbalances are yet treated sufficiently.30-32

It can be illustrated with the second γ-trans geometry
investigated in this study, which has been experimentally
observed in the first nucleotide of single-stranded loops of
human telomere guanine quadruplex (G-DNA) and thus
corresponds to real substate of DNA backbone.33,34 However,
it has been destabilized by the parmbsc0 force field.31

Methods and Model Systems

Model Systems. To fully capture the conformational
behavior of the sugar-phosphate backbone, at least the
dinucleotide unit must be utilized. However, the complexity
of the potential model systems is limited by the fact that, to
avoid strong electrostatic repulsion between two anionic
phosphate groups, which is otherwise screened by the solvent
and counterions in the physiological environment, only one
phosphate group is conceivable. In addition, stacking interac-
tions between nucleobases in dinucleotide model systems
would result in a significant conformational bias, and the
bases were thus excluded from the model systems (see the
discussion below). The model systems used in the present
study can be divided into two groups.
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Group I (Figure 2) consists of two organophosphate
models with only one sugar residue. The first system, SPM,
(the abbreviation stands for sugar-phosphate-methyl; see
Figure 2a), consists of a sugar residue and a methyl group
linked via a phosphodiester bond as suggested by Orozco et
al.29 The second model compound, MOSPM, (i.e., methyl-
oxygen-sugar-phosphate-methyl; see Figure 2b), represents
an extended version of the SPM model with the H3′(n+1) atom
replaced by a methoxy functional group (-O-CH3). In this
system, the sugar moiety is situated in a more natural chemical
environment because of the longer backbone fragment. To
prevent formation of artificial intramolecular hydrogen bonds,
the 3′ and 5′ ends of MOSPM, as well as the 5′ end of SPM,
were terminated with methyl groups.

Group II (Figure 3) contains three models with the
sugar-phosphate-sugar unit mimicking a dinucleotide step.
The simplest system containing no additional groups was
designed and used by MacKerell13 and is further referred to
as T3PS (tetrahydrofuran with 3′ phosphate with a capping
sugar). Another model compound, SPSOM (sugar-phos-
phate-sugar-oxygen-methyl), used in our previous study12

retains all the features characteristic for the DNA dinucleotide
building blocks. The last, and the most complex, model12

referred to as SPSOM-NCH2 was constructed out of SPSOM

model by replacing H1′ of both sugar residues with a
methylene-imino functional group (-NdCH2). This exten-
sion was proposed to compensate, at least partially, for the
neglect of the nucleobases, leading to a better description of
the hyperconjugation effects along the sugar-phosphate
backbone.12

Starting Geometries of the Conformers. All canonical
(BI) DNA backbone geometries (geometries at and around
the canonical structure) were labeled with the symbol “a”;
that is, the particular conformers in the canonical series are
referred to as a1, a2, ..., a11 (Table 1). The typical torsion
angles for this most populated substate of free B-DNA duplex
(R ) 299° (g-), � ) 179° (t), γ ) 48° (g+), δ ) 133°, ε
) 182° (t), and � ) 263°) were obtained by the means of
analysis of crystal structures of 1531 dinucleotide steps in
DNA.7 The representative of the “average” BI-DNA and
simultaneously the reference structure in this study is labeled
a1; the remaining 10 geometries (a2-a11) were prepared to
characterize PES in the vicinity of the above “average” BI
structure. The a1 structure is the best representative of the
BI cluster of geometries.

The first group of noncanonical DNA backbone geometries
occupying the less populated R/γ ) g+/t conformational

Figure 2. (a) SPM (sugar-phosphate-methyl) and (b) MOSPM (methyl-oxygen-sugar-phosphate-methyl) Group I model
compounds. Labeling of the bonds is according to the standard nucleic acid nomenclature. The � torsion angle is defined as
C3′-O3′-P-O5′(n+1), the R+1 torsion angle as O3′-P-O5′(n+1)-C5′(n+1), the �+1 torsion angle as P-O5′(n+1)-
C5′(n+1)-C4′(n+1), and the γ+1 torsion is defined as O5′(n+1)-C5′(n+1)-C4′(n+1)-C3′(n+1).

Figure 3. (a) T3PS (tetrahydrofuran with 3′ phosphate with a capping sugar), (b) SPSOM (sugar-phosphate-sugar with capping
methoxy groups), and (c) SPSOM-NCH2 (sugar-phosphate-sugar with capping methoxy groups and with -NdCH2 groups)
Group II models. Labeling of the bonds is according to the standard nucleic acid nomenclature. The δ torsion angle is defined
as C5′-C4′-C3′-O3′, the ε torsion angle as C4′-C3′-O3′-P, the � torsion as C3′-O3′-P-O5′(n+1), the R+1 torsion angle
as O3′-P-O5′(n+1)-C5′(n+1), the �+1 torsion angle as P-O5′(n+1)-C5′(n+1)-C4′(n+1), and the γ+1 torsion is defined
as O5′(n+1)-C5′(n+1)-C4′(n+1)-C3′(n+1). The 3′-end (i.e., n+1) and 5′-end sugars are on the left and right, respectively,
because the 5′-3′ direction is from right to left in this figure (opposite of Figure 1).
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region is analogously labeled with symbol “b”, that is, b1,
b2, ..., b8 (Table 1). Note that labeling the two series of
structures as “a” or “b” has nothing to do with the helix
form designation. The second subset of R/γ ) g+/t structures
from human telomeric quadruplex loops33,34 is labeled with
symbol “q” and consists of three members denoted as q1,
q2, and q3 (Table 2).

The geometries in the present Article were derived in the
following way. At the beginning, we have taken two “parent”
structures of the SPSOM model optimized at the B3LYP/
6-31+G(d) level in our earlier paper (Supporting Information
of ref 12, g-/g+ (p S13) and g+/t (p S15) structures). These
structures (named spsom_a and spsom_b) served as the initial
structures for the derivation of the “a” and “b” subsets of
structures of the SPSOM system in the present Article. Next,
we have modified (using modredundant route section key-
word of the Gaussian 03 software35) all dihedral angles to
the desired values (Table 1) to obtain structures a1-a11 and
b1-b8, which were subsequently optimized at the respective
theoretical levels (see below). Note that the actual final
geometries derived in this Article are not affected by details
of the two initial “parent” geometries, as we set up and
constrained the dihedral angles upon optimizations.

However, due to the correlations involving pairs of
backbone angles (known from the X-ray database study),
the shift of each torsion angle from its canonical value
introduces also the changes in values of other torsional
angles. To cover these changes, each time when the target
torsion angle was shifted from the canonical a1 structure,
the remaining torsion angle values were adjusted accordingly
to reflect correlation of torsion angles suggested by the X-ray

database study (Table 1).7 As this procedure takes the
backbone torsion angles correlation into account, we suppose
it is better for sampling the PES of the real DNA molecule
than just keeping the remaining torsions fixed at their
canonical values.

The geometries of the three q-conformers were prepared
from the crystal structure of human telomeric quadruplex
loops (pdb code: 1KF1, resolved at the 2.10 Å resolution)
by extracting the corresponding SPSOM segments (Table
2) from the three independent loop structures. The addition
of hydrogen atoms was carried out manually using Accelrys
ViewerPro molecular modeling software. Their initial posi-
tions were adjusted according to the hybridization state of
the linked heavy atom. The structures were then optimized
at the respective theoretical levels (see below) with frozen
dihedrals.

The other models, T3PS, SPM, MOSPM, and SPSOM-
NCH2, were derived in the following manner. We have taken
the a1, b1, and qx (x ) 1, 2, and 3) MP2-optimized SPSOM
geometries (Table 3). These were appropriately chemically
modified to get the other model systems. These geometries
served as “parent” structures for the T3PS, SPM, MOSPM,
and SPSOM-NCH2 models (Table 3; parent structure name).
These parent structures are not reoptimized after modifica-
tion. The corresponding a1-a11 and b1-b8 structures were
then derived from these parent structures by setting up the
required combination of dihedral angles (Table 1) and
subsequent constrained optimizations. The starting geom-
etries, that is, all the above-noted parent structures of all
model systems for the canonical “a”, noncanonical “b”, and
quadruplex “q” variant (Table 3), are given in the Supporting

Table 1. Torsion Angle Values for the Canonical “a” and Noncanonical “b” Geometries

structure label R+1c/γ+1a γ+1a �+1b R+1c �d εe δf targeted perturbation

a1 g-/g+ 45 180 300 260 180 136 BI; no perturbation
a2 50 180 280 270 190 136 (R+1) - 20
a3 40 180 320 260 180 136 (R+1) + 20
a4 45 170 300 260 190 136 (�+1) - 10
a5 45 190 300 260 180 136 (�+1) + 10
a6 35 180 310 260 185 136 (γ+1) - 10
a7 55 180 295 260 180 136 (γ+1) + 10
a8 50 180 300 260 190 116 δ: C1′-exo
a9 45 180 295 260 190 150 δ: C3′-exo
a10 50 190 310 270 160 136 ε -20
a11 45 170 300 260 200 130 ε + 20
b1 g+/t 195 225 65 190 250 145 no perturbation
b2 200 220 50 190 265 150 (R+1) -15
b3 190 220 80 190 225 140 (R+1) + 15
b4 190 215 60 190 260 150 (�+1) -10
b5 195 235 70 190 240 140 (�+1) + 10
b6 205 225 60 190 250 145 (γ+1) + 10
b7 195 220 75 210 235 145 � + 20
b8 190 220 65 180 255 145 � -10

a γ+1: O5′(i+1)-C5′(i+1)-C4′(i+1)-C3′(i+1). b �+1: P(i+1)-O5′(i+1)-C5′(i+1)-C4′(i+1). c R+1: O3′(i)-P(i+1)-O5′(i+1)-C5′(i+1).
d �: C3′(i)-O3′(i)-P(i+1)-O5′(i+1). e ε: C4′(i)-C3′(i)-O3′(i)-P(i+1). f δ: C5′(i)-C4′(i)-C3′(i)-O3′(i).

Table 2. Torsion Angle Values for the Quadruplex Loop “q” Geometries

structure label R+1c/γ+1a γ+1a �+1b R+1c �d εe δf PDB code/NDB code residue ID

q1 g+/t 176 189 77 73 230 143 1KF1/UD0017 DT11
q2 183 190 79 61 224 152 1KF1/UD0017 DT05
q3 195 184 63 64 220 147 1KF1/UD0017 DT17

a γ+1: O5′(i+1)-C5′(i+1)-C4′(i+1)-C3′(i+1). b �+1: P(i+1)-O5′(i+1)-C5′(i+1)-C4′(i+1). c R+1: O3′(i)-P(i+1)-O5′(i+1)-C5′(i+1).
d �: C3′(i)-O3′(i)-P(i+1)-O5′(i+1). e ε: C4′(i)-C3′(i)-O3′(i)-P(i+1). f δ: C5′(i)-C4′(i)-C3′(i)-O3′(i).
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Information. The Supporting Information further includes all
SPSOM MP2-optimized geometries along with their refer-
ence CBS(T) (see below) energies.

QM Calculations. Every molecular electronic calculation
with a finite basis set is susceptible to BSSE due to the fact
that molecular orbitals are approximated by an expansion in
terms of analytical basis functions centered on different
points in real space (usually the nuclei) that are dependent
on the geometry of the studied system.36 The magnitude of
the BSSE decreases as the size of the basis set increases
and becomes zero at the limit of an infinite (also called
complete) basis set (CBS).37 For intermolecular noncovalent
interactions, the BSSE can be efficiently corrected by the
counterpoise procedure.38 However, BSSE also affects
potential energy surfaces of monomers.39-44 Although
several methods were proposed to eliminate the intramo-
lecular BSSE,39-41 the most reliable approach is to perform
calculations with large basis sets,40 ideally at the CBS limit.
As the intramolecular BSSE is very significant in structures
with conjugated aromatic systems,45 the omission of nucleo-
bases in our model compounds reduces this artifact
substantially.

Geometry Optimizations. The gradient geometry opti-
mization of the SPSOM structures using internally deter-
mined redundant coordinates was carried out at three levels
of theory: (i) B3LYP/6-31+G(d),46,47 (ii) MP2/6-31+G(d),
and (iii) the resolution of identity (RI)48,49 DFT TPSS meta-
GGA functional50 augmented with the empirical dispersion
D-0.96-27 type term51 (TPSS-D) with the large 6-311++G-
(3df,3pd) (LP) basis set.

As we are primarily interested in biologically meaningful
conformations rather than in pure and often unnatural gas-
phase minima, we have fixed the highly flexible torsion
degrees of freedom during the geometry optimization at their
specified values (Table 1) via application of constraints to
all backbone dihedrals, ranging from γ+1 to δ (in 3′f5′
direction). Obviously, the actual backbone conformation in
real physiological environment is determined by numerous
factors we do not take into account in this study, like

interactions with solvent and counterions, base-base stack-
ing, and edge-to-edge interactions, etc. It is thus unlikely
that the experimentally observed and occupied conforma-
tional regions would be obtained by unconstrained (or
insufficiently constrained) gas-phase optimizations of small
model systems. To preserve the connection to biology, it is
imperative to fix the backbone during optimization process
and restrict minimization to conformational domains we are
interested in. Otherwise, we would end up with intrinsically
relaxed but irrelevant geometries, not occurring in real DNA
structures. To illustrate the necessity of constrains, we
performed several full optimizations, that is, without con-
straints, the results of which can be found in the Supporting
Information (Table S12). The unconstrained optimizations
drive the structure energetically downhill and away from
initial (and relevant) conformational region.

While the MP2 and B3LYP optimizations were carried
out using Gaussian 03 software, which is capable of fixing
coordinates at values that differ from those of the input
structure (i.e., it is possible to change torsions to desired
values prior to constrained optimization within single
optimization input), the Turbomole code is able to fix torsions
at input values only. Because the module for the dispersion
calculation of the TPSS-D optimization run was accessible
for Turbomole package only, we used the B3LYP optimized
geometries with the backbone torsion angles already set to
target values as input structures for the subsequent TPSS-D
reoptimization.

The minimum energy geometries of the remaining models
(except for SPSOM-NCH2, where the optimization turned
out to be problematic, see Results and Discussion) were
obtained at the B3LYP/6-31+G(d) and MP2/6-31+G(d)
levels of theory. All relevant backbone dihedrals starting
from γ+1 (in 3′f5′ direction) were fixed during the
optimization procedure in studied model systems.

Single-Point Calculations. The SPSOM model was
chosen as the reference compound, which served to compare
number of wave function-based and DFT-based methods with

Table 3. List of Parent Geometries with Their Names and Origina

model label R/γ family parent structure name origin of the geometry

SPSOM g-/g+ spsom_a g-/g+ SPSOMb

g+/t spsom_b g+/t SPSOMb

g+/t G-DNA spsom_qxd quadruplex loop, NDB, UD0017; PDB, 1KF1c

T3PS g-/g+ t3 ps_a a1 SPSOM||MP2/6-31+G(d), with modifications
g+/t t3 ps_b b1 SPSOM||MP2/6-31+G(d), with modifications
g+/t G-DNA t3 ps_qx qx SPSOM||MP2/6-31+G(d), with modifications

SPSOM-NCH2 g-/g+ spsom_nch2_a a1 SPSOM||MP2/6-31+G(d), with modifications
g+/t spsom_nch2_b b1 SPSOM||MP2/6-31+G(d), with modifications
g+/t G-DNA spsom_nch2_qx qx SPSOM||MP2/6-31+G(d), with modifications

SPM g-/g+ spm_a a1 SPSOM||MP2/6-31+G(d), with modifications
g+/t spm_b b1 SPSOM||MP2/6-31+G(d), with modifications
g+/t G-DNA spm_qx qx SPSOM||MP2/6-31+G(d), with modifications

MOSPM g-/g+ mospm_a a1 SPSOM||MP2/6-31+G(d), with modifications
g+/t mospm_b b1 SPSOM||MP2/6-31+G(d), with modifications
g+/t G-DNA mospm_qx qx SPSOM||MP2/6-31+G(d), with modifications

a All parent starting geometries are available in xyz format in the Supporting information. The notation “X||Y” denotes system “X”
optimized at “Y” level of theory. The corresponding a1-a11 and b1-b8 structures were derived from these parent structures by modifying
the dihedrals according to the Table 1 and subsequently using constrained gradient optimization. b See the Supporting Information of ref 12,
g-/g+ (p S13) and g+/t (p S15) structures for spsom_a and spsom_b, respectively. c X-ray structure of the human telomeric quadruplex
sequence. d “qx” represents q1, residue, DT11; q2, residue, DT05; and q3, residue, DT17.
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the most accurate CBS(T) approximation (this abbreviation
stands for estimated CCSD(T)/CBS calculations, see below).

Because of computational demand of the CCSD(T)
calculations, the method with the highest consensus to
CBS(T) was selected to benchmark conformers of the
remaining models.

All relative energies are computed with respect to the
conformer a1, which is considered as the best representative
of the canonical BI-DNA.

Wave Function-Based Single-Point Calculations. The
RIMP2/CBS energies were estimated using the extrapolation
scheme suggested by Halkier and co-workers52,53 and
Dunning’s augmented correlation-consistent basis sets of
double-� and triple-� quality (aug-cc-pVDZ and aug-cc-
pVTZ).54,55 The extrapolation to the CBS effectively elimi-
nates both BSSE and basis set incompleteness errors.
Nevertheless, our preceding experience indicates this ex-
trapolation scheme with aug-cc-pVDZ and aug-cc-pVTZ
basis sets provides results approaching more likely the MP2/
aug-cc-pVQZ calculations than the true MP2/CBS limit.
Therefore, some residual BSSE and basis set incompleteness
errors are likely to remain.10,11,51 The Hartree-Fock (HF)
energy and the correlation MP2 energy contribution are
evaluated independently according to eqs 1 and 2:

Note that this equation notation for both the HF (eq 1) and
the MP2 correlation component (eq 2) has been algebraically
derived from the standard Helgaker’s formulation (see refs
52 and 53) and is more suitable for practical evaluation of
CBS extrapolated energies. The original extrapolation scheme
and our formulation are thus equivalent.

To speed up the regular MP2 procedure, the RI-approxima-
tion56-58 was utilized.

To account for higher order correlation effects, coupled
cluster (CC) calculations with single, double, and perturba-
tive, noniterative triple excitations utilizing 6-31+G(d) basis
set (CCSD(T)/6-31+G(d)) were performed. Providing that
the difference between the MP2 and CCSD(T) energies, often
abbreviated as ∆CCSD(T), shows only small basis set
dependence,59-63 the CCSD(T)/CBS energies could be
estimated as eq 3:

The CCSD(T) calculations were carried out with the MOL-
PRO 2006.1 package.64 The CBS(T) energies represent the
reference values with which all other methods were com-
pared. The CBS(T) abbreviation is used to indicate that the
CCSD(T) CBS extrapolation is approximated.10,11

DFT-Based Single-Point Calculations. The DFT-based
methods are computationally less demanding and less af-
fected by the BSSE than conventional wave function-based

methods. The older functionals are known to be deficient in
the description of the dispersion interaction.65,66 Thus, much
recent effort has been spent on including the dispersion
interaction either by adjusting current functionals,67,68 by
developing new functionals,69-71 or by augmenting the
existing functionals with empirical correction dispersion
energy term.51,72-74 In the present work, the performance
of several traditional and recent functionals was compared
to the reference CBS(T) energies of the SPSOM model
system. The density functionals considered in this work fall
into the following categories:

(i) The first is pure generalized gradient approximations
(GGA) functionals. In the present work, the PBE functional74

augmented with the Grimme’s empirical correction term for
long-range dispersion effects,75 PBE-D, in conjunction with
the TZVPP76 triple-� basis set was employed.

(ii) The second is hybrid nonlocal GGA functionals
containing a portion of the exact exchange interaction from
the HF calculation. The only hybrid GGA functional used
in the present study was the B3LYP46,47 functional with the
Pople’s 6-31+G(d) basis set.

(iii) The third is hybrid meta-GGA type functionals that
include also terms dependent on the kinetic energy density.
The nonlocal meta-GGAs used in this work include M06,
M06-HF, M06-2X, M08-HX, and M08-SO.77-79 All listed
Minnesota functionals belong to the widely used M06 and
M08 suites of functionals and were applied with the
6-31+G(d) basis set.

(iv) The fourth is meta, HF-exchange excluded, GGA
functionals with entirely local exchange-correlation descrip-
tion. The local treatment makes these functionals computa-
tionally very efficient; they are an order of magnitude faster
than methods including HF exchange.80 The two local meta-
GGA functionals employed in the present study are M06-L81,82

and TPSS50 in combination with Jurečka’s empirical disper-
sion B-0.96-27 type term (TPSS-D).51 The 6-31+G(d) and
6-311++G(3df,3pd) “LP” basis sets were used for M06-L
and TPSS-D calculations, respectively. The RI approximation
was available and used for the TPSS functional calculation
only.

(v) The fifth is double-hybrid density functionals, which
improve the hybrid GGAs by adding a fraction of MP2
correlation energy on top of the HF exchange interaction.
The mPW2-PLYP83 functional with the Ahlrich’s TZVPP76

triple-� quality basis set was used.
All RI-approximated calculations were performed with

Turbomole 5.10.84 The mPW2-PLYP and PBE-D energies
were calculated with Orca2.6.85 All remaining ab initio
calculations were carried out using Gaussian 03, revision
E.01.35

Electronic Structure Analysis. The potential energy
surface calculations were complemented by atoms-in-
molecules (AIM)86-88 and natural bond orbital (NBO)89-95

analyses. The aim of the AIM calculations is to analyze the
local electron density curvatures and reveal critical points,
which can improve the understanding of the physical
principles driving the stabilization of the individual conform-
ers. The charge density topologies were computed from the
nonfrozen core approximated MP2/6-31+G(d) converged

ECBS
HF ) Eaug-cc-pVDZ

HF +
Eaug-cc-pVTZ

HF - Eaug-cc-pVDZ
HF

0.760691
(1)

ECBS
MP2 ) Eaug-cc-pVDZ

MP2 +
Eaug-cc-pVTZ

MP2 - Eaug-cc-pVDZ
MP2

0.703704
(2)

ECBS
CCSD(T) ≈ CBS(T) ) ECBS

MP2 + (E6-31+G(d)
CCSD(T) - E6-31+G(d)

MP2 ) )

ECBS
MP2 + ∆CCSD(T) (3)
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wave functions. The basis set contained 6d functions rather
than the standard 5d ones. These calculations were performed
with the AIMPAC code.96,97

NBO analysis was applied to identify orbital interactions
leading to electron delocalization in the studied systems. As
we have shown elsewhere,12 both B3LYP and HF methods
assign approximately the same fraction of electrons to non-
Lewis delocalized orbitals and thus provide similar results.
In this study, we performed the analysis for the HF/6-
31+G(d) orbitals using MP2-optimized structures and the
NBO 3.0 program91,94 implemented in the Gaussian 03
code.35

Force Field Calculations. The force field energies were
computed using the nonpolarizable ff99 force field,25 as well
as its reparametrized variant parmbsc0.29 The poor descrip-
tion of the R/γ energetics in ff99 leading to the serious helix
unwinding during long DNA simulations26-28 is substantially
improved in its parmbsc0 reparametrization. Prior to evalu-
ation of both the ff99 and the parmbsc0 energies, the MP2-
optimized model system geometries have been relaxed using
the respective force field except for the fixed backbone
dihedrals. That means that force field energies were derived
using force field geometries. The relaxation was carried out
to the default tolerances using the steepest descent technique
for the first 250 iterations, followed by the conjugate gradient
method; no cutoff was applied. To keep the backbone
dihedrals at the values given in Tables 1 and 2, tight restraints
have been imposed. The penalty function that pushes a given
term toward the desired value was set at 3000 kcal mol-1.

The electrostatic contribution to the internal energy is
computed as a pairwise interaction between the atom-
centered partial charges. Hence, the partial charges must be
somehow derived and assigned to each atom with a constraint
that the sum of partial charges equals the total charge of the
system. QM offers numerous established schemes how to
derive atomic charges, such as Mulliken and Voronoi
population analysis, NBO analysis, AIM analysis, etc.
However, AMBER force field calculations are based on the
so-called ESP (electrostatic potential) or RESP (restrained
ESP) charges.98 The (R)ESP charges are used in MM
calculations because they allow realistic estimates of mo-
lecular interactions and conformational preferences. The
(R)ESP charges are determined in the following way: (i) the
molecular geometry is optimized to a stable minimum
conformation using a convenient QM method, (ii) then the
electrostatic potential of the optimized molecule is calculated
on a three-dimensional real-space grid, (iii) which is sub-
sequently used to fit the atom-centered charges. So the
(R)ESP charges are actually effective charges fitted solely
to reproduce the QM-determined electrostatic potential of
the system created by the electronic and nuclei distribution.
Note that (R)ESP charges have no physical meaning as there
is an infinite number of solutions of how to allocate charges
among the atoms to reproduce the electrostatic potential to
a desired precision. As our model systems do not belong to
the standard residues for which the AMBER library contains
precomputed partial charges, we used the RESP fitting
procedure to obtain new charges for all our model systems.
That means that the charges we used in this study are not

exactly the same as in the original force field but have been
derived with the same conception. This allows a consistent
comparison between the QM and MM computations. The
charges have been fitted at the HF/6-31G(d) level of theory
for the most stable MP2/6-31+G(d) optimized geometry,
which is the a2 structure. Note that the HF/6-31G(d) level
is intentionally used to derive the Cornell et al. force field
charges because the modestly overpolarized HF charge
distributions are more compatible with the water models
typically used for condensed-phase simulations. The charges
are given in the Supporting Information. All force field
calculations were performed with the sander module of
Amber 10.0 suite of programs.99

Results and Discussion

SPSOM Geometries. The conformations corresponding
to canonical (a-conformers), noncanonical g+/t (b-conform-
ers), and G-DNA loop g+/t (q-conformers) values of R/γ
angles were optimized at B3LYP/6-31+G(d), MP2/6-
31+G(d), TPSS-D/LP, parm99, and parmbsc0 levels of
theory with the backbone torsion angles kept constant at the
values defined in Tables 1 and 2.

The C1′ · · ·C1′ distances within different conformational
types increase in the order of a < b < q. The differences in
C1′ · · ·C1′ distances between MP2 and TPSS-D structures
are nearly negligible for a- and b-subsets of conformers.
Regarding q-geometries, TPSS-D C1′ · · ·C1′ distances are
about 0.14-0.28 Å longer than their MP2 equivalents.

The B3LYP geometries are generally more extended than
the MP2 and TPSS-D ones with C1′ · · ·C1′ distances being
on average 0.30 Å longer for all three structure sets. Further
relaxation of the MP2-optimized geometries using empirical
force fields leads to additional increase in C1′ · · ·C1′
distances. The parmbsc0 and parm99 geometries are nearly
identical with predicted C1′ · · ·C1′ distances being 0.2-0.5
Å longer as compared to MP2 data for a- and q-conformers,
respectively. The force field minimized geometries mutually
differ more in the noncanonical b-region of the conforma-
tional space because parmbsc0 extends the C1′ · · ·C1′
distance by 0.2-0.3 Å more than parm99.

The fact that the MP2 and TPSS-D optimized conforma-
tions tend to be slightly more packed than the B3LYP and
force field ones might be attributed to the formation of weak
CH · · ·O hydrogen bonds and van der Waals contacts (see
later discussion on AIM analysis). The propensity to form
close contacts between C and O atoms follows the subsequent
order of methods: MP2 ∼ TPSS-D > B3LYP > force field.
The interrelation between the C1′ · · ·C1′ distance and forma-
tion of CH · · ·O interaction is illustrated in the Supporting
Information, Figure S1, which shows that changing the
method of calculations is accompanied by variation of the
C2′ · · ·O5′ distance, while the 3′-sugar is somewhat repuck-
ered. This ultimately affects also the C1′ · · ·C1′ distance.
Although the majority of detected CH · · ·O interactions are
artifacts of optimization process in the absence of solvent
environment and DNA context, they do affect both geom-
etries and intrinsic energetics. Note that separation of the
specific impact of such interactions on the optimal geometries
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from the general propensities of the applied computational
levels is far from being straightforward. This underlines the
complexity of reference computations on flexible biomo-
lecular fragments. However, we have estimated energy
overstabilization contribution in case of significant CH · · ·O
interactions (see the AIM analysis below). The capability to
establish such contacts also depends on the size of the model
system. For a list of potential CH · · ·O contacts, see Table
S1.

The C1′ · · ·C1′ distances for SPSOM model system are
listed in the Supporting Information, Table S2. Note that in
real DNA duplex in condensed phase, C1′ · · ·C1′ distances
represent variables strongly coupled to backbone torsions,
glycosidic � torsion angle, and base pairs stacking parameters
(mainly slide, roll, and twist).3 Although intrastrand C1′ · · ·C1′
distances depend on several structural parameters, in B-DNA,
the majority of them range between 4.5 and 6.0 Å, which
coincides with the present calculations.3

For the q-structures, the experimentally determined
C1′ · · ·C1′ distances are longer than the computed ones with
the discrepancy being up to 0.7 Å (Table S2), which is
mainly caused by some modest sugar ring adjustments, as
illustrated in Figure S1.

Another structural feature worth investigating is the change
of the sugar pucker depending on the optimization method
employed. While the sugar at the 5′-end has the pucker fixed
during the optimization (the δ angle is kept constant; see
Tables 1 and 2), the pucker of the 3′-sugar differs for
geometries from diverse conformational space regions. While
experimentally determined puckers of the a, b, and q-
conformations are in the C2′-endo region, 3′-sugar puckers
of the optimized a, b, and q-structures are close to C2′-endo,
O4′-endo, and C1′-exo, respectively. In both canonical and
noncanonical conformational space regions, MP2, TPSS-D,
and B3LYP predict similar puckers with only marginal phase
angle (P) differences. Sugar puckers predicted by parm99
and parmbsc0 are nearly identical in case of the a- and
q-structures with P values below those of QM methods. As
in the case of C1′ · · ·C1′ distances, parm99 and parmbsc0
3′-sugar puckers differ more significantly in the b-confor-
mational region, for which parmbsc0 pushes the pucker into
the O4′-endo domain, while parm99 optimization drives the
pucker to the C1′-exo (see the Supporting Information, Table
S3). The reason why parm99 and parmbsc0 differ in the 3′-
sugar pucker description within the b-conformational space
region while they provide virtually the same results for
q-conformers is not clear. It may be related to lower � values
in case of q-conformers leading to relaxation of a strain in
the backbone.

Unlike our previous work,12 the corresponding QM-
minimized geometries are qualitatively equal with both
B3LYP versus MP2 and TPSS-D versus MP2 RMSD values
not exceeding 0.30 Å (q1). This is due to fixation of the
torsions during optimizations. The RMSDs between equiva-
lent force field and MP2 optimized geometries are a little
bit larger with the maximum value of 0.36 Å for the q1
structure. Because of the extensive backbone fixation, the
optimal geometries obtained at different levels of theory
differ only marginally (for the largest difference observed

between the force field and MP2 geometry, i.e., the q1
structure, see Figure S2).

The maximum difference between the RIMP2/CBS rela-
tive energies (all relative energies are calculated with respect
to the a1 structure) calculated at the B3LYP and MP2
geometries equals 0.28 kcal mol-1 (for the b2 structure),
which is ∼3.4% of the relative energy of the respective
structure. This value can be considered as the upper limit of
uncertainty of the RIMP2/CBS energies introduced by the
difference between MP2 and B3LYP geometries. Although
the MP2 method accounts better for dispersion interaction
than B3LYP, it is more influenced by BSSE. On the other
hand, TPSS-D functional combining better description of the
dispersion interaction with the small susceptibility to the
BSSE (supported by the fact that the dispersion correction
is fitted to CBS data51) yields geometries similar to those of
MP2. Thus, the MP2 geometries optimized using the
moderate size 6-31+G(d) basis set are accurate enough, and
they are utilized as reference geometries in the present study.
Note, however, that the similarity of MP2/6-31+G(d)
geometries to the TPSS-D/LP ones still does not guarantee
insignificant influence of the intramolecular BSSE. It may
also reflect compensation of errors, mainly BSSE versus
underestimation of the dispersion energy due to the limited
basis set size. Nevertheless, the data suggest that the
calculated energetics is not dramatically sensitive to the
geometry optimization method.

SPSOM Energies. WaVe Function-Based Methods. The
electronic energies of the SPSOM system conformers were
calculated at the MP2/6-31+G(d), CCSD(T)/6-31+G(d), and
RIMP2/CBS levels of theory using the MP2/6-31+G(d)
minimized geometries. The latter two methods were used to
construct the CBS(T) energies, that is, the estimated
CCSD(T) energies extrapolated to the CBS limit (see
Methods and Model Systems, eq 3). The CBS(T) relative
energies represent reference values with which all other
methods were compared. The relative energies of the wave
function-based methods are given in Table 4 (ordering
according to the increasing relative energies of the conform-
ers is listed in the Supporting Information, Table S4).

In the canonical a-region, the MP2/6-31+G(d) results are
in a good agreement with the CBS(T) energies with the
maximum deviation of 0.21 kcal mol-1 for the a10 conformer
(Table 4). On the other hand, b-conformers are systematically
destabilized at the MP2/6-31+G(d) level of theory by ∼1.50
kcal mol-1. As a result of medium size basis set, this
discrepancy might be caused by the intramolecular BSSE,
for its magnitude is structure-dependent. Because of slightly
more packed geometry of a-conformers as compared to b-
and q-structures, it can be anticipated that canonical con-
formers are more affected by artificially stabilizing BSSE
than are b- and q-conformers. This should lead to a
systematic destabilization of b- and q-structures with respect
to a1, while the relative energetics of a-conformers should
remain unaffected (provided that compactness variability
within the canonical a-region is marginal). This assumption
is supported by the fact that CCSD(T)/6-31+G(d) and MP2/
6-31+G(d) relative single-point energies are almost identical
to the values of ∆CCSD(T) energy differences being at most
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-0.07, -0.34, and -0.08 kcal mol-1 for a, b, and q-
conformers, respectively. The effect of inclusion of higher-
order CCSD(T) correlation contributions can thus be regarded
as negligible.

Among the wave function-based methods, RIMP2/CBS
shows the best correlation with the CBS(T) results. The
destabilization of b-conformers using the RIMP2/CBS
method is increased by 0.1-0.3 kcal mol-1 as compared to
the CBS(T) reference values. It is of the same order of
magnitude as the uncertainty introduced by the choice of
level of geometry optimization. This makes RIMP2/CBS a
convenient alternative benchmark method, which is much
faster than the complete CBS(T) calculation.

DFT-Based Methods. The ability of 10 different function-
als to describe energetics of the SPSOM model system was
assessed by comparison with the benchmark CBS(T) calcula-
tions. Relative energies related to a1 are given in Tables 5,
6, and S7. Ordering of conformers according to their
increasing relative CBS(T) energies is listed in the Supporting
Information, Tables S5 and S6.

The PBE functional with the triple-� quality TZVPP basis
set augmented with the Grimme’s empirical correction term
(PBE-D) gives very good agreement with the CBS(T)
calculations. For the a-set of canonical structures, the largest
absolute value deviation observed between PBE-D/TZVPP
and CBS(T) energies equals 0.68 kcal mol-1 for the a10
geometry. Noncanonical b-systems are, as compared to
CBS(T), consistently overstabilized on average by 0.18 kcal
mol-1. For the q-systems, no significant difference from
CBS(T) energies was detected.

The agreement between B3LYP/6-31+G(d) and CBS(T)
is significantly worse. Although the largest difference

between the B3LYP and CBS(T) relative energies of the a-
and q-conformers is -1.09 kcal mol-1 (a8), the ordering of
these conformers is rather diverse (Tables 5 and S5). The
energy separation between a1 and b-conformers on the
B3LYP PES is reduced by 1.22 kcal mol-1 (b5) to 2.09 kcal
mol-1 (b3) with respect to the CBS(T) energies.

Table 4. Relative Wave Function-Based Energies of the
SPSOM Model Conformers Related to the Structure a1a

system/
method

MP2/
6-31+G(d)

CCSD(T)/
6-31+G(d)

RIMP2/
CBSb CBS(T)c

a1 0.00 0.00 0.00 0.00
a2 -0.85 -0.84 -0.82 -0.76
a3 2.71 2.64 2.67 2.61
a4 -0.40 -0.41 -0.34 -0.34
a5 0.18 0.19 0.12 0.14
a6 1.17 1.14 1.18 1.16
a7 0.26 0.24 0.18 0.17
a8 0.69 0.60 0.72 0.66
a9 -0.09 -0.04 -0.10 -0.03
a10 2.40 2.35 2.26 2.19
a11 -0.15 -0.17 0.00 0.02
b1 9.07 8.77 7.83 7.58
b2 9.72 9.48 8.42 8.25
b3 9.49 9.17 8.09 7.82
b4 8.65 8.45 7.38 7.23
b5 9.56 9.19 8.28 7.93
b6 9.71 9.38 8.53 8.25
b7 9.41 9.11 7.98 7.74
b8 8.60 8.34 7.32 7.10
q1 2.34 2.21 1.95 1.87
q2 2.50 2.37 2.01 1.94
q3 2.50 2.34 1.91 1.81

a The energies were calculated using the MP2/6-31+G(d)
optimized geometries. All energies are given in kcal mol-1.
b Estimated CBS energies using the extrapolation scheme
suggested by Halkier and co-workers52,53 via aug-cc-pVDZ and
aug-cc-pVTZ basis sets (eqs 1 and 2). c Estimated CCSD(T)
energies extrapolated to CBS according to eq 3.

Table 5. Relative Energies of the SPSOM System
Conformers Related to a1a

system

functional: PBE-D B3LYP mPW2-PLYP TPSS-D CBS(T)b

basis set: TZVPP 6-31+G(d) TZVPP LPc

a1 0.00 0.00 0.00 0.00 0.00
a2 -0.56 -0.99 -0.85 -0.81 -0.76
a3 2.08 2.30 2.53 2.19 2.61
a4 -0.18 -0.07 -0.18 -0.32 -0.34
a5 0.04 -0.32 -0.09 0.07 0.14
a6 0.95 1.03 1.19 0.87 1.16
a7 0.17 0.00 0.01 0.23 0.17
a8 0.63 -0.43 0.25 0.67 0.66
a9 0.13 0.07 0.00 0.17 -0.03
a10 1.51 2.58 2.27 1.86 2.19
a11 0.15 -0.49 -0.15 -0.11 0.02
b1 7.52 6.00 6.78 7.15 7.58
b2 7.88 6.25 7.29 7.80 8.25
b3 7.68 5.73 6.76 7.10 7.82
b4 6.98 5.35 6.27 6.91 7.23
b5 7.90 6.72 7.29 7.45 7.93
b6 8.17 6.46 7.45 7.70 8.25
b7 7.42 6.08 6.92 7.11 7.74
b8 7.12 5.40 6.23 6.77 7.10
q1 1.84 1.80 1.98 1.98 1.87
q2 2.10 2.36 2.37 2.30 1.94
q3 1.49 2.03 2.29 1.81 1.81

a Geometries were optimized at MP2/6-31+G(d) level of theory.
All energies are given in kcal mol-1. b Estimated CCSD(T)
energies extrapolated to CBS according to eq 3. c LP stands for
the 6-311++G(3df,3pd) basis set.

Table 6. Relative Energies of the SPSOM System
Conformers Related to a1a

system

functional: M06-L M06 M06-HF M06-2X

CBS(T)bbasis set: 6-31+G(d)

a1 0.00 0.00 0.00 0.00 0.00
a2 -0.79 -1.08 -1.16 -0.79 -0.76
a3 2.40 2.56 2.83 2.60 2.61
a4 -0.17 -0.68 -0.42 -0.25 -0.34
a5 0.28 0.15 0.13 0.14 0.14
a6 1.15 1.10 1.23 1.27 1.16
a7 0.23 0.06 0.14 0.16 0.17
a8 0.87 0.51 0.62 0.95 0.66
a9 0.21 -0.17 -0.21 -0.01 -0.03
a10 2.31 2.24 2.45 2.19 2.19
a11 0.18 -0.30 -0.12 0.24 0.02
b1 8.64 7.86 8.45 8.62 7.58
b2 9.46 8.85 8.97 9.15 8.25
b3 8.88 7.99 8.81 8.84 7.82
b4 8.24 7.55 7.92 8.02 7.23
b5 9.15 8.37 8.98 9.15 7.93
b6 9.33 8.61 9.01 9.28 8.25
b7 8.75 8.24 8.95 8.86 7.74
b8 8.21 7.34 7.97 8.01 7.10
q1 2.28 1.24 2.24 2.44 1.87
q2 2.68 1.58 2.53 2.63 1.94
q3 2.72 1.98 2.95 2.77 1.81

a Geometries were optimized at the MP2/6-31+G(d) level of
theory. All energies are given in kcal mol-1. Data for the M08 set
of functionals are given in the Supporting information, Table S7.
b Estimated CCSD(T) energies extrapolated to CBS according to
eq 3.
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The mPW2-PLYP/TZVPP method decreases the relative
energy separation between b-conformers and canonical a1
conformation within the range of 0.64 kcal mol-1 (b5) to
1.07 kcal mol-1 (b3) (Table 5 and Table S5). mPW2-PLYP
functional, as compared to CBS(T) results, subtly destabilizes
also q-conformers with respect to a1 by 0.11 (q1), 0.44 (q2),
and 0.48 (q3) kcal mol-1. The ordering of the a-conformers
according to their mPW2-PLYP relative energies nearly
coincides with that of CBS(T).

The TPSS-D/LP energies agree well with the CBS(T) ones.
The energetic ordering of a-conformers is identical to the
reference CBS(T) data with a9 being the only exception. The
energies of q1 and q2 relative to the a1 conformer are shifted
upward by 0.11 and 0.36 kcal mol-1, while the relative
energy of the q3 system is exactly the same as at the CBS(T)
level of theory (Table 5). The b-conformers are all oversta-
bilized with respect to CBS(T) by 0.32 kcal mol-1 (b4) up
to 0.72 kcal mol-1 (b3). Separate consideration of the
empirical dispersion term (D) indicates lower degree of
dispersion stabilization of b-conformations (D ≈ -17.4 kcal
mol-1) when compared to a-conformations (D ≈ -18.8 kcal
mol-1). Thus, neglect of the dispersion term would result in
an artificial overstabilization of b-conformers on average by
∼1.4 kcal mol-1. The performance of the TPSS functional
alone (i.e., without empirical dispersion correction) along
with the LP basis set is comparable to hybrid B3LYP/6-
31+G(d).

The common feature of the foregoing functionals is the
overstabilization of the b-conformers with respect to a1 as
compared to CBS(T) results. Analysis of the PBE and TPSS
single-point energies, both with and without dispersion
correction, suggests that the overstabilization of b-region
conformational subspace is, at least partially, due to the
insufficient description of the dispersion interactions within
the pure exchange-correlation functionals. Although both
PBE-D and TPSS-D also slightly overstabilize b-conformers
with respect to CBS(T), the overstabilization is markedly
smaller in contrast to B3LYP, mPW2-PLYP, as well as PBE
and TPSS without dispersion correction. Thus, for correct
description of the potential energy landscape of this model
system, functionals including dispersion energy contribution
(mPW2-PLYP, PBE-D, and TPSS-D) must be employed.
However, the high computational costs of the mPW2-PLYP
prohibit its practical use, and PBE-D and TPSS-D function-
als, being of at least comparable quality, are generally
recommended. To quantitatively assess performance of the
foregoing functionals, we present basic statistics in Table 7.

Five hybrid meta-GGA (M06, M06-HF, M06-2X, M08-
HX, and M08-SO) and one local meta-GGA (M06-L)
Truhlar’s functionals yield consistent results. Unlike the
previously studied functionals (Table 5), all quoted func-
tionals of M06 and M08 suites destabilize b-systems (with
respect to the reference CBS(T) calculations) and, with the
exception of M06 functional, also the quadruplex q-conform-
ers. The largest contribution to the destabilization probably
comes from the HF repulsion. The higher energetic separation
between a/b- and a/q-conformers may be explained in case
of M06-2X and M06-HF by the overestimation of nonlocal
exchange as M06-2X and M06-HF include 54% and 100%

of the HF exchange energy, respectively. The a-systems are
very well described by the M06 suite of functionals (Tables
6 and S6). While the M06 functional slightly falls behind
the other M06-functionals as far as the a-region is concerned,
it is markedly superior for a/b and a/q energy difference
estimation and thus also for the overall performance.
Regarding M08 functionals, the destabilization of b- and
q-conformers with respect to a1 is larger as compared to
M06 set of functionals. Moreover, the energetic description
of a-conformers diverges from the CBS(T) more as compared
to the M06 functionals (Table S7). M06 functionals thus
appear to be more appropriate for energetic analyses of this
kind of compounds than the M08 set of functionals. For
statistical evaluation of the DFT methods, see Table 7.

Force Field Energies. The correlation between force field
(ff) relative energies calculated at the ff-minimized geom-
etries and the CBS(T) energies is shown in Figure 4. In the
canonical a-region, both force fields give similar results,
which, with the exception of a8, a9, and a10 conformers
(Figure 4), agree well with the CBS(T) energies (Table S8).
Destabilization of the a10 structure in both force fields may

Table 7. Correlation between the Reference CBS(T) and
DFT Energies Computed Using MP2/6-31+G(d) Optimized
Geometriesa

RSoS ·n-1 d

functional basis set rb qc a b q alle

PBE-D TZVPP 0.9979 0.9736 0.082 0.041 0.044 0.102
TPSS with D LPf 0.9986 0.9372 0.039 0.256 0.048 0.263

without D 0.9864 0.7570 0.145 3.971 0.086 3.975
mPW2-PLYP TZVPP 0.9963 0.8974 0.029 0.763 0.144 0.777
B3LYP 6-31+G(d) 0.9867 0.7872 0.189 3.086 0.076 3.093
M06-L 6-31+G(d) 0.9982 1.1418 0.021 1.204 0.515 1.310
M06 0.9989 1.0423 0.034 0.150 0.184 0.240
M06-HF 0.9977 1.1205 0.030 0.827 0.593 1.018
M06-2X 0.9982 1.1322 0.014 1.023 0.571 1.172
M08-HX 0.9965 1.1829 0.076 1.996 0.948 2.211
M08-SO 0.9961 1.2086 0.046 2.558 1.366 2.900

a a1 conformer is not included in the statistics as its relative
energy equals by definition 0.0 kcal mol-1 for all methods. The
“best” entry in the given column is highlighted. b Pearson’s
product-moment correlation coefficient detecting linear
dependencies between CBS(T) and respective DFT energies
defined as

N∑
i

Ei
CBS(T)Ei

DFT - ∑
i

Ei
CBS(T) ∑

i

Ei
DFT

�N∑
i

Ei
CBS(T)2

- (∑
i

Ei
CBS(T))2�N∑

i

Ei
DFT2

- (∑
i

Ei
DFT)2

where N is the number of conformers (21); the reference a1 conformer

is excluded. The summations are over all conformers, a1 excluded.
c Slope of the linear regression line passing through the origin.
The least-squares estimate of the slope (q) is defined as:

∑
i

Ei
CBS(T)Ei

DFT · ( ∑
i

Ei
CBS(T)2)�1

d Residual sum of squares (RSoS) divided by the number of
conformers (n; na ) 10, nb ) 8, nq ) 3) belonging to the
respective conformational region (a, b, q):

1
n ∑

i,region
(Ei

DFT - Ei
CBS(T))2

e [(RSoS ·na
-1)2 + (RSoS ·nb

-1)2 + (RSoS ·nq
-1)2]1/2. f LP is short for

6-311++G(3df,3pd) basis set.
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be due to incorrect description of the short-range repulsion
by the force field. The structure exhibits contact between
H2′ and OP(n+1) atoms, which are as close as 2.4 Å. The
sum of O2 and HC atomic types radii is ∼3.15 Å. Another
contact occurs between H1′ · · ·H5′(n+1) whose distance is
about 2.1 Å, while twice a H1 atomic type radius is ∼2.77
Å. Note that the 6-12 Lennard-Jones potential is known to
severely exaggerate the short-range interatomic repulsion,100

while it also has been noticed that the H(C) hydrogens of
the Cornell et al. force field are too large.101 The cause of
the energy difference (with respect to CBS(T) results)
for the a8 and a9 conformers is not clear. Although both
force fields destabilize R/γ ) g+/t structures (i.e., b and
q-conformers), the parmbsc0 gives at first sight less accurate
results. The relative energies of b and q-conformers are
shifted upward (i.e., away from the CBS(T) reference values)
by 1.6-2.8 kcal mol-1 (b-structures) and 1.6-2.5 kcal mol-1

(q-structures) with respect to parm99, respectively. It is to
be noted, however, that parmbsc0 intentionally penalizes
γ-trans geometries as compared to parm99 to prevent their
formation in condensed phase molecular simulations.

One of the notorious problems in MM studies is the fact
that constant (conformation-independent) atomic charges are
used. As the electrostatic potential the charges are fitted on
is conformation-dependent, different sets of charges are
obtained when derived using different conformers. Thus, to
get more insight into the force field performance, we have
carried out yet another set of force field calculations, where
the charges used for evaluation of the b-conformers were
fitted on the HF/6-31G(d) potential of the most stable
b-conformer (b8). The charges used to evaluate the a-

conformers were kept as before (fitted on the HF/6-31G(d)
potential of the a2 system, Table S9). This leads to the a1/b
energy separation below ∼6.0 kcal mol-1 for parmbsc0 and
below ∼3.5 kcal mol-1 for parm99, while the reference
CBS(T) a1/b separation is 7.1-8.3 kcal mol-1. Fitting
charges of b-conformers on the “b-type” electrostatic po-
tential renders parmbsc0 force field superior and supports
the basic correctness of the γ-trans penalty of parmbsc0. It
also illustrates how sensitive are the force field calculations
to the choice of geometry for the derivation of their fixed
atomic charges. Our evaluation with different sets of charges
roughly corresponds to computations with conformation-
dependent charges.

AIM and NBO Analysis. The importance of the weak
CH · · ·O hydrogen bonds was assessed by the means of
atoms-in-molecules (AIM) Bader analysis. The 6d converged
electron density (3;-1) critical points were determined by
the AIM analysis of the MP2/6-31+G(d) wave function (see
the Supporting Information, Table S10). The electron density
and the Laplacian of the electron density threshold for a weak
CH · · ·O hydrogen bond was set to 0.01 au. Because of rather
small structural differences among structures within the same
conformational region (i.e., a, b, and q), we analyzed the
first representative out of each region only (a1, b1, and q1).
The analysis was done for SPSOM, T3PS, MOSPM, and
SPM models (see below for structures of the later three
systems).

All identified weak interactions are the so-called CH · · ·O
contacts, in which the van der Waals interaction is known
to be relatively more important than in standard hydrogen
bonds.102 Because weak CH · · ·O hydrogen bonds were found
in canonical a1 system only, we expect their impact
exclusively on energetics of the a-conformers. The param-
eters of critical points found in the remaining b and
q-conformers are below the threshold and can thus be
regarded as energetically insignificant. To get a basic idea
about the extent of stabilization by CH · · ·O hydrogen bonds,
interaction energy of a single CH · · ·O contact was also
estimated using the AIM analysis. Two different energetic
minima for the pucker conformation were localized at the
B3LYP/6-31+G(d) and MP2/6-31+G(d) levels of theory in
a4, a5, a9, and a11 conformers of the SPM model system
(for details, see SPM model system results). The C4′-endo
pucker predicted by the MP2/6-31+G(d) calculation in all
a-structures allows one to form two almost equally strong
(based on AIM) CH · · ·O hydrogen bonds (C2′H · · ·O5′ and
C1′H · · ·O5′). The C2′-endo sugar conformation obtained in
a4, a5, a9, and a11 structures using B3LYP/6-31+G(d)
optimization is stabilized only by the C2′H · · ·O5′ interaction.
Calculation of the RIMP2/CBS energies of both optimized
geometries allowed one to estimate the energetic contribution
(at the RIMP2/CBS level of theory) of one CH · · ·O weak
hydrogen bond to be ∼0.6-0.8 kcal mol-1. This difference
was indirectly estimated by comparing energies calculated
on DFT geometry with C2′-endo pucker and MP2 geometry
with C4′-endo. While the former geometry has one CH · · ·O
contact, the latter has two.

The only potentially biologically relevant CH · · ·O interac-
tion detected in our model systems is the C2′H · · ·O5′ contact.

Figure 4. Plot of the correlation between ff//ff and CBS(T)//
MP2/6-31+G(d) relative energies (for the corresponding
values, see the Supporting Information, Table S8). The RESP
charges were fitted to the HF/6-31G(d) electrostatic potential
of the most stable conformer a2 (Table S9). The ideal
correlation is represented by the black line with the unit slope.
Three a-conformation outliers (a8, a9, and a10) are marked
with a black circle.
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The C2′H · · ·O5′ distance is quite frequently around 3.3 Å
or even shorter in the B-DNA X-ray structures, including
some nucleotides in ultrahigh resolution structures (e.g., ref
103; X-ray structure of a single chain of B double helix
resolved at 0.74 Å resolution; the C2′ · · ·O5′ distances of
DG-4 and DG-9 residues are 3.2 and 3.0 Å, respectively).
Occurrence of this interaction in gas-phase computations has
been noticed several times.17,18,21 We nevertheless suppose
its rather small impact on conformational preferences of the
sugar-phosphate backbone in real environment as the
experimental B-DNA C2′ · · ·O5′ distances are generally
longer than 2.9-3.0 Å seen in gas-phase computations (Table
S10). Its effect on the gas-phase energetics should be taken
into account.

NBO analysis was carried out to obtain additional insight
into destabilization of the b1 structure relative to a1 using
the SPSOM and SPM model systems. The unconstrained
sugar (i.e., the 3′-sugar of the SPSOM model and the only
sugar residue of the SPM model system) in the b1 structure
adopts the noncanonical O4′-endo conformation. The same
sugar in the a1 structure remains in canonical C2′-endo
(SPSOM) or flips to C4′-endo (SPM) conformation. The
strongly stabilizing n(O4′)fσ*(C4′-C5′) hyperconjugation
in the a1 structure is made impossible in the b1 conformation
by O4′ atom pushed out of the C1′,C2′,C3′,C4′ plane. This
conformational change is driven by the orbital interactions
between n(O5′) and σ*(C4′-C5′), which induces a minor
twist of the 5-membered ring along the O4′-C4′ bond due
to the repulsion between the electron-rich C4′-C5′ bond and
the lone pairs at O4′. The characteristic orbital delocalizations
acting in a1 and b1 systems are listed in Table 8. Note that
while the introduced stereoelectronic orbital interactions
certainly contribute to stabilization of the a1 structure versus
b1, we do not suggest that we can in this manner explain
the whole energy difference between a- and b-conformers
(7.1-8.3 kcal mol-1 for the SPSOM model at the CBS(T)
level of theory). Note that the empirical force fields,
inherently incapable of capturing QM effects, also destabilize
b-conformers. In case of the force field, however, we should
take into consideration the uncertainty introduced be the fixed
atomic charges. When the charges are fitted to reproduce
the electrostatic potential in the canonical a-region, they will
necessarily introduce error in the b-region description, which
could incidentally compensate for the missing electronic
structure effects. The results reported above with the charges

derived for the b-region geometry indirectly support this
possibility. Because of the complex stereoelectronic effects,
sugar conformations represent a major challenge for force
field derivation. We have recently substantially reparam-
etrized the Cornell et al. force field �-torsion104 to prevent
ladder-like degradation in long RNA simulations.105 How-
ever, we were still not capable to obtain a fully balanced
simultaneous description of pucker and the �-torsion.

Other Model Systems. Geometry optimizations of the
remaining model systems (except of SPSOM-NCH2, see
below) were carried out at the MP2/6-31+G(d) and B3LYP/
6-31+G(d) levels of theory with the backbone torsions (Table
9) fixed at values listed in Tables 1 and 2. Their energies
were compared at the RIMP2/CBS//MP2/6-31+G(d) level
of theory (Supporting Information, Table S11).

The decision whether to fix the sugar pucker throughout
geometry optimization or not is important. Restriction of the
pucker to a defined region is advantageous for model
comparison and for reduction of the number of potential
CH · · ·O interactions. On the other hand, relaxation of the
sugar allows one to avoid possible steric conflicts, which
may bias PES. To estimate the energetic bias induced by
different pucker types, the a1, b1, and q1 conformers of
SPSOM, T3PS, MOSPM, and SPM model systems were
reoptimized with the sugar(s) kept at the C2′-endo conforma-
tion. As the largest change in the relative energies due to
the pucker fixation was found to be ∼1.0 kcal mol-1 at the
MP2/6-31+G(d) level of theory, the bias introduced by not
imposing pucker constraints can be considered as acceptable.
In the present work, we decided to relax the sugar pucker(s)
of the T3PS, MOSPM, SPM, and SPSOM-NCH2 models
during the optimization process. We do not claim that letting
sugar pucker relax during minimization process is the correct
practice as both options have their pros and cons. The
estimated error in the relative energies introduced by our
decision not to fix the pucker(s) is ∼1.0 kcal mol-1 and
below.

T3PS Model System. The 3′-sugar (Figure 3) in the T3PS
model adopts the C4′-endo conformation in a1, a7, a8, and
a10 structures. These four conformers are probably stabilized
by C1′H · · ·O5′ contact, in addition to the C2′H · · ·O5′
interaction, which is typical of all a-conformers. The a3 and
a6 systems do not adopt C4′-endo pucker due to low value
of γ+1 torsion angle (40° for a3 and 35° for a6), preventing
formation of the C1′H · · ·O5′ contact (Figure 5). The C4′-
endo conformation adoption is also precluded in a2, a4, and
a11 conformers because it would likely lead to H1′(n+1)/

Table 8. Off-Diagonal Fock Matrix Elements (F, au)
Characterizing the Delocalization Effects along the
O5′-C5′-C4′-O4′ Bonds in a1 and b1 Structuresa

off-diagonal Fockian value

a1 b1

direction SPSOM SPM SPSOM SPM

n(O4′)fσ*(C4′-C5′) 0.070 0.087 0.033, 0.030 0.035
σ(C4′-C5′)fRyd(O4′) 0.049 0.046 0.043 0.039
n(O5′)fσ*(C4′-C5′) 0.050 0.049 0.033, 0.061 0.032, 0.062
σ(C4′-C5′)fRyd(O5′) 0.034 0.039 0.034, 0.032 0.034, 0.031

a The results were obtained using the HF-wave functions at the
MP2/6-31+G(d) optimized geometries. Two values listed in the
same entry refer to two acceptor orbitals centered on the same
atom (pair).

Table 9. List of the Constrained Backbone Torsion
Anglesa

model system fixed torsion angles

SPSOM-NCH2 γ+1,b �+1,c R+1,d �,e ε,f δg

T3PS γ+1, �+1, R+1, �, ε
MOSPM γ+1, �+1, R+1, �
SPM γ+1, �+1, R+1, �

a Values of the fixed torsions are given in Tables 1 and 2.
b γ+1: O5′(i+1)-C5′(i+1)-C4′(i+1)-C3′(i+1). c �+1: P(i+1)-
O5′(i+1)-C5′(i+1)-C4′(i+1). d R+1: O3′(i)-P(i+1)-O5′(i+1)-
C5′(i+1). e �: C3′(i)-O3′(i)-P(i+1)-O5′(i+1). f ε: C4′(i)-C3′(i)-
O3′(i)-P(i+1). g δ: C5′(i)-C4′(i)-C3′(i)-O3′(i).
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H2′ steric clash. The reason why the 3′-sugar residue of the
remaining a-conformers (a5 and a9) do not adopt C4′-endo
pucker is not obvious. (Note that the optimizations start from
parent structures with C2′-endo arrangement.) The lack of
the C1′H · · ·O5′ attractive interaction likely destabilizes
(relatively to a1) the respective T3PS a-conformers not
adopting the C4′-endo pucker by ∼0.5 kcal mol-1 when
compared to the SPSOM model (Table S11 and Figure 6).
The only overstabilized T3PS conformers with respect to
SPSOM (i.e., below diagonal in Figure 6) are those with
C4′-endo 3′-sugar conformation, which is clear evidence of
the C1′H · · ·O5′ interaction. Moreover, the a1 conformer is
affected by C2′H · · ·OP(n+1) interaction whose biological
relevancy is arguable. We presume that the alteration of the
3′-sugar pucker within the canonical (i.e., a-conformer)
conformational region of T3PS is caused by replacing
methoxy group on C3′ present in SPSOM and MOSPM

models with a hydrogen atom as no such pucker variations
have been observed in SPSOM and MOSPM (see below)
models. This observation indicates that the T3PS model
system is electronically incomplete and stresses the necessity
of a longer backbone fragment at the 3′-end. Because
nucleobases are attached via C1′ to the sugar ring, the
C1′H · · ·O5′ interaction is a consequence of the lack of
nucleobases in our model systems and cannot occur in real
DNA.

The increase of energy difference between a1 and q-
conformations by ∼1.9-2.3 kcal mol-1 in T3PS with respect
to SPSOM data (Figure 6 and Table S11) can be, at least
partially, explained by the difference in the number and
strength of CH · · ·O hydrogen bonds detected in a- and
q-conformers.

Although correlation of RIMP2/CBS energies between
T3PS and SPSOM models depicted in Figure 6 is rather
good, the above discussion clearly shows that the two models
are not equivalent.

MOSPM Model System. For the MOSPM system, the
B3LYP/6-31+G(d) and MP2/6-31+G(d) geometry optimiza-
tions give very similar geometries. The removal of the 5′-
sugar moiety in MOSPM model eliminates some CH · · ·O
interactions (e.g., C2′H · · ·OP(n+1) observed in a1 of the
T3PS model) that are described differently by B3LYP or
MP2 methods. Unlike the T3PS (and also SPM, see below)
model, the optimization of the parent mospm_x (x ) a, b,
q1, q2 and q3) structures retains the pucker of the 3′-sugar
residue. This is probably due to the methoxy group on C3′,
which significantly alters the chemical environment and, as
far as a-conformers are concerned, also stiffens the sugar
ring while prohibiting the C4′-endo pucker formation.

The approximately same difference in the number and
quality of the CH · · ·O interactions in b- and q-conformers
with respect to the a1 structure for both MOSPM and
SPSOM model systems is responsible for high correlation
of RIMP2/CBS MOSPM energies with the SPSOM model
for all conformational domains (Figure 7). The a10 conformer
constitutes the only outlier and is overstabilized in the
MOSPM model (Table S11). The a10 conformer is ∼1.8-2.3
kcal mol-1 above a1 in the double-sugar residue model

Figure 5. Two 3′-sugar pucker conformations observed in canonical structures of the T3PS model system: (a) C4′-endo pucker
of the a1 conformer enabling simultaneous formation of C2′H · · ·O5′ (C · · ·O distance 2.9 Å) and C1′H · · ·O5′ (C · · ·O distance
3.0 Å) contacts. (b) C2′-endo pucker of the a6 conformer enabling a single C2′H · · ·O5′ interaction (C · · ·O distance 3.0 Å).

Figure 6. The correlation plot of the RIMP2/CBS//MP2/6-
31+G(d) energies between T3PS and SPSOM models (Table
S11). The ideal correlation is represented by the black line
with the unit slope.
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systems (SPSOM and T3PS), while in single-sugar models
(MOSPM and SPM) it is ∼0.2 kcal mol-1 below the a1
conformer. The reason for the destabilization of a10 in
SPSOM and T3PS models is the low value of the ε torsion
angle (160°, while the canonical value is ∼180°), which puts
H2′ and OP(n+1) as close as 2.4 Å and H1′ and H5′(n+1)
into a distance of 2.1 Å. As both the H1′ and the H2′ are
attached to the 5′-sugar moiety, its substitution by a methyl
group releases the repulsion. Thus, the only outlier does not
reflect inconsistency of MOSPM and SPSOM model systems
because the ε torsion is not defined in the MOSPM model
and thus cannot be taken into account in the comparison.
We suggest that the SPSOM and MOSPM model systems
are equivalent as far as the γ+1, �+1, and R+1 torsions
are concerned.

SPM Model System. B3LYP and MP2 optimizations of
the SPM model system provide two groups of conformers.
While minimum structures of the first group are independent
of the used level of theory, B3LYP and MP2 methods yield
different conformations differing in the sugar pucker in the
second group consisting of a4, a5, a9, a11, and q1 conform-
ers. In the first group, both B3LYP and MP2 minimizations
led consistently to either C4′-endo, C2′-endo, or O4′-endo
sugar pucker. The C4′-endo pucker (in a1, a2, a7, a8, and
a10 systems) arises due to the presence of stabilizing
C1′H · · ·O5′ interaction. The low value of γ+1 torsion
prevents the formation of this interaction in a3 (γ+1 ) 40°)
and a6 (γ+1 ) 35°) conformers, in which the C2′-endo
remains preserved. The O4′-endo pucker of the b- and
q-conformers is induced by minimizing the overlap of the
lone pair of O4′ with electron-rich σ*(C4′-C5′) bond (see
NBO analysis).

The second group consists of a4, a5, a9, a11, and q1
structures. In the case of a-conformers, MP2 yields C4′‘-

endo sugar pucker, while B3LYP optimization preserves the
pucker in the C2′-endo region. This can be explained by the
change in the fixed �+1 torsion from canonical 180° (a1)
to 170° (a4), 190° (a5), and 170° (a11) values, which is
probably accompanied by weakening of the C1′H · · ·O5′
interaction that is sensed by the MP2 method but not by the
DFT. The reason why B3LYP-optimized a9 structure does
not adopt C4′-endo pucker is not clear as the �+1 torsion is
fixed at the canonical value of 180°. The sugar pucker of
the q1 conformer, which is in O4′-endo conformation at the
B3LYP minima, is shifted toward the C1′-exo region at the
MP2 PES. However, the reason for this behavior is not
obvious.

The effect of the methoxy group was studied by comparing
the RIMP2/CBS relative energies of the MP2 optimized
conformers of SPM and MOSPM models (Figure 8). The
energy ordering relative to the canonical conformation a1 is
the same in both models (Table S11). The destabilization of
a3, a6, and q-conformers (Table S11) with respect to a1 in
the SPM system by ∼0.4-0.7 kcal mol-1 is due to the lack
of the biologically irrelevant C1′H · · ·O5′ interaction present
in a1 SPM but absent in the five specified SPM structures.
No such contact has been detected in the a1 MOSPM.
Although relative energies of the b-conformers were expected
to be shifted upward in the SPM model for the same reason
as the a3, a6, and q-conformers, they are overstabilized with
respect to MOSPM by ∼0.5 kcal mol-1 (Table S11, Figure
8). We ascribe this to the methoxy group, as it is the only
difference between these two model systems. Note that apart
from the methoxy group, both parent geometries (mospm_x
and spm_x) from which optimization was initiated are
identical. Both have the sugar pucker in the C2′-endo region.
This indicates that the methoxy group effectively prevents
the sugar pucker to adopt C4′-endo conformation, and it

Figure 7. The correlation plot of the RIMP2/CBS//MP2/6-
31+G(d) energies between MOSPM and SPSOM models
(Table S11). The ideal correlation is represented by the black
line with the unit slope. The a10 outlier is marked with a black
circle and is discussed in the text.

Figure 8. The correlation plot of the RIMP2/CBS//MP2/6-
31+G(d) energies between SPM and MOSPM models (Table
S11). The ideal correlation is represented by the black line
with the unit slope.
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should be an inherent component of any model system for
backbone computations.

The correlation of the RIMP2/CBS relative energies of
the b- and q-structures between SPM versus MOSPM and
SPM versus SPSOM model systems is similar. The q-
conformers are destabilized, and the b-conformers are
systematically overstabilized in case of SPM model (Table
S11). Correlation between MOSPM and SPSOM models is
worse. Hence, SPM and SPSOM model systems are not
equivalent.

SPSOM-NCH2 Model System. The structures of this model
system were optimized at the MP2/6-31+G(d) level of theory
only as this model turned out to be inconvenient. The
substitution of the C1′ hydrogen atom by the -NdCH2

group, which partially mimics the effect of an aromatic
nucleobase, leads to the extension of the hyperconjugation
network over both sugar residues.12 However, this system
is unsuitable for studying the energetics of the sugar-phos-
phate backbone. The results of the geometry optimization
depend on the initial orientation of the -NdCH2 groups.
The existence of various interaction modes of the -NdCH2

groups (Figure 9) does not allow one to separate the energetic
contribution of the methylene-imino groups from that of the
sugar-phosphate backbone. It thus illustrates why model
systems containing nucleobases (or even their simpler
analogues) are not recommended for studying the energetics
of the NA backbone. They do not allow to separate the
intrinsic backbone preferences from other factors determining
their PES.

Conclusions

To gain insight into the intrinsic energetics and electronic
structure of the sugar-phosphate backbone, several model
systems of 22 relevant DNA backbone conformations from
three distinct conformational families were studied in the
gas phase by the means of high level ab initio methods. The
present study provides a set of accurate structure-energy
data for DNA backbone model systems, which can be used
as a benchmark database for assessment of other theoretical
methods. The most accurate data are obtained at the MP2/
CBS level corrected for CCSD(T) term using smaller basis
set, that is, using the CBS(T) method. The study leads to
the following conclusions:

To maintain the sugar-phosphate backbone to sample
relevant conformations and combinations of dihedral angles

found in crystal structures of DNA, multiple constraints on
the backbone torsion angles have to be imposed. Essentially,
it is necessary to fix all dihedral angles at their target values.
Albeit fixation of the sugar pucker prevents formation of
unnatural CH · · ·O contacts, it may, on the other hand, lead
to unnatural tensions biasing energetic analysis. For this
reason, fixation of the pucker should be considered and
examined from case to case.

The ∆CCSD(T) correction is virtually constant in all
studied conformers. Thus, RIMP2 method with sufficiently
large basis set (preferably extrapolated to CBS) is adequate
for accurate description of nucleic acids backbone.

From the 10 tested DFT approaches, the best results close
to the reference CBS(T) calculations are provided by the PBE
and TPSS functionals augmented with an empirical disper-
sion term (PBE-D and TPSS-D), thus stressing the impor-
tance of including the dispersion interaction. Very good
results were also obtained using the nonlocal meta-GGA M06
functional from the Minnesota M06 suite. The mPW2-PLYP
functional also yields reasonable results in accord with
CBS(T) reference calculations. Its applicability is, however,
limited due to the computational requirements. The remaining
M06-type functionals, that is, M06-L, M06-HF, and M06-
2X, are of comparable performance. They provide results
coinciding with CBS(T) in the canonical a-region but are
less accurate in the evaluation of a1 versus b and a1 versus
q energy difference. Functionals of the M08 set (M08-HX
and M08-SO) are generally inferior to M06 functionals for
the energetic analysis of this kind of compounds. The popular
B3LYP performs rather unsatisfactorily.

The common attribute of the PBE-D, TPSS-D, and mPW2-
PLYP functionals is a slight underestimation of destabiliza-
tion of b-conformers with respect to the canonical a1
conformation as compared to the CBS(T) data. Neglect of
the empirical dispersion terms would result in further
stabilization of b-conformers with respect to a1 and thus to
a bigger deflection from CBS(T) trend. Performance of pure
TPSS/LP (i.e., without dispersion correction) is thus of
B3LYP quality.

M06 and M08 functionals, on the other hand, follow the
opposite trend as they further destabilize b- and q-conformers
with respect to a1 as compared to CBS(T) data.

The intrinsic stability of the noncanonical R/γ ) g+/t
b-conformers is lower as compared to the canonical a-
structures partially due to the deformation of the sugar

Figure 9. Two interaction modes of the -NdCH2 groups: (a) T-shape-like interaction mode, and (b) stack-like interaction mode.
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conformation, which leads to weakening of the strongly
stabilizing n(O4′)fσ*(C4′-C5′) hyperconjugation effect.
The conformational change in the 3′-sugar is driven by the
orbital interactions between n(O5′) and σ*(C4′-C5′) induc-
ing a minor twist of the sugar ring along the O4′-C4′ bond.

The energetics of the studied model systems is biased by
the presence of the network of weak CH · · ·O hydrogen
bonds, the majority of which can be considered as the gas-
phase artifact. Even though their stabilizing effect balances
out to a large degree when structures taken from the same
conformational region are confronted, their impact should
be considered for comparison of structures from different
regions of PES. The number of CH · · ·O interactions and
their strength are structure-dependent. Description of these
interactions is also method-dependent. These usually undes-
ired interactions greatly complicate reference calculations on
fragments of DNA backbone. The only such contact that is
occasionally seen in high-resolution B-DNA structures is
C2′H · · ·O5′.

The simplification of the SPSOM model system to the
MOSPM one has only a marginal impact on the relative
energies. Thus, we propose MOSPM as the potentially most
appropriate model system for the QM studies of the
sugar-phosphate backbone preferences in nucleic acids as
a function of backbone torsion angles, excluding ε and �
torsions. It has several advantages over the other studied
model systems (SPSOM, T3PS, SPM, and SPSOM-NCH2):
(i) It is smaller than SPSOM, T3PS, and SPSOM-NCH2
systems. (ii) The replacement of the 5′-sugar residue by the
methyl group significantly reduces the number of CH · · ·O
interactions. (iii) In contrast to SPM, it offers (due to the
presence of methoxy group) a more complete description of
the electronic structure along the backbone. (iv) The addition
of the -NdCH2 groups in the SPSOM-NCH2 system does
not introduce any advantage, as their presence significantly
alters (and complicates) the shape of the potential energy
surface and also increases the BSSE artifact. Although
inherently incapable to model ε and � torsion profiles, the
MOSPM system could replace the SPSOM model in future
reference studies of δ, γ, �, and R torsions of the DNA
backbone.

In future work, we plan to extend the present computations
in two directions. One of them is inclusion of the solvent
effects, and the other is consideration of other dihedral angle
combinations.
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J. J. Chem. Theory Comput. 2009, 5, 1524–1544.
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Abstract: The RNA hairpin loops represent important RNA topologies with indispensable biological
functions in RNA folding and tertiary interactions. 5′-UNCG-3′ and 5′-GNRA-3′ RNA tetraloops are the
most important classes of RNA hairpin loops. Both tetraloops are highly structured with characteristic
signature three-dimensional features and are recurrently seen in functional RNAs and ribonucleoprotein
particles. Explicit solvent molecular dynamics (MD) simulation is a computational technique which can
efficiently complement the experimental data and provide unique structural dynamics information on the
atomic scale. Nevertheless, the outcome of simulations is often compromised by imperfections in the
parametrization of simplified pairwise additive empirical potentials referred to also as force fields. We
have pointed out in several recent studies that a force field description of single-stranded hairpin segments
of nucleic acids may be particularly challenging for the force fields. In this paper, we report a critical
assessment of a broad set of MD simulations of UUCG, GAGA, and GAAA tetraloops using various
force fields. First, we utilized the three widely used variants of Cornell et al. (AMBER) force fields known
as ff94, ff99, and ff99bsc0. Some simulations were also carried out with CHARMM27. The simulations
reveal several problems which show that these force fields are not able to retain all characteristic structural
features (structural signature) of the studied tetraloops. Then we tested four recent reparameterizations
of glycosidic torsion of the Cornell et al. force field (two of them being currently parametrized in our
laboratories). We show that at least some of the new versions show an improved description of the
tetraloops, mainly in the syn glycosidic torsion region of the UNCG tetraloop. The best performance is
achieved in combination with the bsc0 parametrization of the R/γ angles. Another critically important
region to properly describe RNA molecules is the anti/high-anti region of the glycosidic torsion, where
there are significant differences among the tested force fields. The tetraloop simulations are complemented
by simulations of short A-RNA stems, which are especially sensitive to an appropriate description of the
anti/high-anti region. While excessive accessibility of the high-anti region converts the A-RNA into a
senseless “ladder-like” geometry, excessive penalization of the high-anti region shifts the simulated
structures away from typical A-RNA geometry to structures with a visibly underestimated inclination of
base pairs with respect to the helical axis.
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Introduction

RNA is an unbranched, linear polymer composed of four
nucleotide units, A, C, G, and U. RNA molecules are usually
single-stranded and fold back upon themselves. The 2′-OH
group of ribose, absent in DNA, is a powerful donor and
acceptor of hydrogen bonds (H-bonds) that is involved in
an astonishing repertoire of non-Watson-Crick (noncanoni-
cal) interactions. The noncanonical interactions are essential
features of RNA three-dimensional structure, dynamics,
function, and evolution. Folded RNA molecules typically
form short antiparallel double helices by aligning Watson-
Crick-complementary stretches of a sequence. These canoni-
cal RNA double helices alternate with regions of nucleotides
not forming canonical base pairs, i.e., formally unpaired
regions. The secondary (2D) structure depicts canonical
regions of the folded RNA molecule through the display of
parallel lines representing canonical duplex RNA. All of the
remaining nucleotides are shown as unpaired loops in such
2D plots. Although these are called loops, these nominally
unpaired regions are usually precisely structured via nonca-
nonical interactions and are of the utmost importance for
RNA structure and function. The 2D structures of loops can
be formally classified as hairpin loops formed by a single-
strand segment folded on itself to terminate a helix, internal
loops having two strand segments that occur between two
helices, and multihelix junctions consisting of multiple-strand
segments.1,2

The most frequently observed and functionally important
hairpin loops are tetraloops (TLs), which cap canonical
helices with four loop bases, abbreviated as L1-L4 in this
paper. TLs facilitate the backbone inversion required for the
formation of secondary and tertiary structures.3-7 Among
all possible combinations,8 YNMG and GNRA (Y stands
for pyrimidine, N for any nucleotide, M for adenine or
cytosine, and R for purine), TL families are the most
abundant.5 These TL families are exceptionally thermody-
namically stable (namely, when the TL is closed by CG base
pairs in the stem),9 have well-defined structures, and are
involved in many biologically relevant processes. In general,
TLs initiate folding of RNA structures3,4,10 and are important
interaction sites for tertiary contacts.11-13

UNCG Tetraloop. The UNCG TLs (a subfamily of the
YNMG family) nucleate RNA global folding.3 This tetraloop
displays poor binding to natural ligands except cations and
is not involved in RNA/RNA interactions. Experimental
structures of this loop display very limited structural
variability.14-17 The most stable of UNCG TLs (UUCG, see
Figure 1) has been extensively studied by several authors.
Sakata showed that the 2′-OH groups of UL1, CL3, and GL4

and the amino group of GL4 are responsible for the
thermodynamic stability of the UUCG motif.18 Later Wil-

liams and Hall studied the role of 2′-OH groups of all
nucleobases through ribose to 2′-deoxyribose mutations. They
concluded that the most significant effect was observed for
UL1(2′-OH) deletion.19,20

The first NMR experiments identified the trans-Watson-
Crick/sugar-edge (tWS)21 GL4/UL1 base pair with the
UL1(O2′) · · ·GL4(O6) H-bond as a signature interaction of the
UUCG TL.22 The NMR structure further revealed extensive
stacking interactions and CL3(N4) · · ·UL2(pro-Rp) base phos-
phate interaction type 7 (7BPh),23 which are considered as
the main source of the high thermodynamic stability.17,22

The X-ray structures agreed well in the overall topology
of the UUCG TL and unraveled two additional UL2-
(O2′) · · ·GL4(N7) and CL3(O2′) · · ·CL3(O2) H-bonds.14 The

* Corresponding author. Tel.: +420 585 634 756 (M.O.). Fax:
+420 585 634 761 (M.O.). E-mail: michal.otyepka@upol.cz (M.O.).
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† Department of Physical Chemistry, Palacky University Olomouc.
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|University of Utah.

Figure 1. (Left) Secondary structures of the studied systems
with base pairing and base-phosphate interactions annotated
according to the standard classifications.21,23 GL4 of the UUCG
tetraloop having syn orientation is highlighted in red. The
modeled GC pairs in the GAGA system are shown in gray.
The loop residues are labeled as L1-L4 to avoid context
numbering. For instance, U6 of UUCG is labeled as UL1.
(Right) Three-dimensional structures of studied systems. The
A-RNA stem part is shown in red, while the tetraloop nucle-
otides are in blue.
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latest NMR experiments of Schwalbe et al. gained an ultra-
high resolution of 0.25 Å for the loop region (0.3 Å for the
stem region).17 The structure confirmed the tWS GL4/UL1 base
pair with its characteristic UL1(O2′) · · ·GL4(O6) H-bond and
7BPh interaction between CL3(N4) and UL2(pro-Rp). Sugars
of UL2 and CL3 adopted the C2′-endo puckering in agreement
with the X-ray structure.

The stability of UUCG TL was also extensively studied
by molecular dynamics (MD). Miller and Kollman24 ob-
served the destabilization of the UL1(O2′) · · ·GL4(O6) H-bond
in explicit solvent MD simulations with the AMBER Cornell
et al. ff94 force field and argued that the UL1(O2′) · · ·GL4(O6)
interaction cannot be considered as the main source of the
exceptional thermodynamic stability of the UUCG TL.25

However, as we will demonstrate below, the loss of the
signature UL1(O2′) · · ·GL4(O6) H-bond in simulations was in
fact due to the imperfectness of the force field. The
exceptional thermodynamic stability and structural features
of UUCG TL were also addressed in many recent theoretical
studies including replica exchange molecular dynamics and
umbrella sampling PMF calculation.26-30

GNRA Tetraloops. Contrary to UNCG, GNRA TLs
primarily mediate RNA tertiary interactions. An analysis of
X-ray structures shows striking geometrical conservation also
for the GNRA TLs.8 Structural adaptations in GNRA
TL-TL receptor complexes typically includes changes of
the TL receptor while the TL is stiff.31 Williams and co-
workers identified 21 examples of standard TLs with the
GNRA-like topology in the 2.4 Å resolution X-ray structure
of Haloarcula marismortui (H.m.) large ribosomal subunit.8

Although they occur in variable contexts within the ribosomal
subunit, they adopt virtually identical geometries. The study
further identified many hairpin loops with nucleotide inser-
tions, deletions, switches, or strand clips which also adopt
very similar 3D structures. Nevertheless, for the GNRA TLs,
other experimental methods furnish evidence supporting their
conformational dynamics, although in some cases the flex-
ibility can also reflect error margins and inaccuracies in the
experiments (see below). Note that even in the lower-
resolution ribosomal X-ray structure data, refinement and
noise inaccuracies cannot be ruled out as sources of error.
For example, this may introduce syn/anti bias32,33 and
perhaps obscure the exact hairpin loop structures in some
cases.

The first information about structural features of GNRA
TL came from NMR34 and lower resolution (∼3 Å) X-ray
structures.35,36 The high-resolution structures of the sarcin/
ricin loop (SRL) domain of the large ribosomal subunit37-40

together with a structural analysis8 of the large ribosomal
subunit41 and NMR experiments42,43 furnished in-depth
insight into common features of the native fold of GNRA
TLs. They include the trans Hoogsteen/sugar-edge (tHS) AL4/
GL1

21 base pair; three signature H-bonds, namely, the GL1(N1/
N2) · · ·AL4(pro-Rp) 3BPh interaction, GL1(N2) · · ·AL4(N7),
and GL1(O2′) · · ·RL3(N7) (Figure 2); and stacked NL2, RL3,
and AL4 bases. The backbone of GNRA TLs adopts classic
U-turn topology. Contrary to UNCG TL, some structural
variability of GNRA TLs is anticipated because, for instance,

protein ribotoxin restrictocin binds an unfolded GNRA TL.44

However, the majority of GNRA TLs (∼80%) adopt the
canonical structure.37 The question whether ribotoxins induce
the conformation change or capture a temporarily unstruc-
tured GNRA TL remains open. The dynamics of GNRA TL
are the subject of intensive experimental43,45-49 and theoreti-
cal studies.50-52

Due to their small size, TLs have been a genuine target
for simulation studies.19,26-30,50,53,54 The simulation studies
in general indicate rather substantial flexibility of the TLs,
which exceeds variability that is inferred from atomic
resolution experiments (see above), suggesting that simula-
tions can be affected by the quality of force fields, typically
parametrized keeping in mind the representation of regular
helices, not compact irregular structures.55-57

In the present study, we investigate the structural dynamics
of three representatives (UUCG, GAGA, and GAAA) of the
UNCG and GNRA TL families. The aim of the paper is two-
fold: first, to get insights into the balance of forces in the
TLs and, second, to better understand the performance of
molecular mechanics force fields for these difficult systems.
The TL simulations are supplemented by simulations of short
A-RNA stems. We selected four widely used force fields
for nucleic acids: three AMBER (Cornell et al.) force fields,
ff94,25 ff99,58 and ff99bsc0,59 and CHARMM27.60 The ff99
and ff99bsc0 simulations were also performed at higher ionic
strength using excess KCl salt to check the impact of ionic
strength on the TL structure and dynamics.61 Besides using
the above established force fields, four recent reparameter-
izations (two of them from our laboratories) of � glycosidic
torsion of the AMBER force field are tested. They are
combined with ff99 and ff99bsc0 force fields (see the
Methods for details). These � modifications were derived
recently primarily on the basis of quantum-chemical (QM)
computations but were not extensively tested in real simula-
tions. Despite centering on high-level QM calculations,
results from the reparameterizations differ considerably as
different models and very different levels of QM computa-
tions were applied. Thus, in total, the performances of 12
RNA force field variants and combinations were considered

Figure 2. Signature H-bonds (black dashed lines) of UUCG
and GAAA tetraloops on the left and right sides, respec-
tively.
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(CHARMM27, ff94, ff99, ff99bsc0, and the last two in
combination with four � modifications).

Methods

Starting Structures. The starting structure of UUCG TL
was taken from the high-resolution NMR structure (PDB ID:
2KOC).17 The GAAA TL was taken from the X-ray structure
of a large ribosomal subunit of Haloarcula maristumortui
(PDB ID, 1JJ2; mean resolution, 2.40 Å; residues
800-813).62 The GAGA TL was derived from the high-
resolution X-ray structure determined at 1.04 Å resolution
of the sarcin-ricin loop (SRL; PDB ID, 1Q9A; residues
2658-2663)39 and capped by two additional C/G base pairs.
Short A-RNA stems were built using NAB available from
the AmberTools package.63

AMBER Simulation Protocol. We performed classical
MDsimulationsusingwellestablishedsimulationprotocols.57,61,64

Missing hydrogen atoms were added by the LeaP module
of the AMBER package on the basis of standard residue
templates. Each system was neutralized by Na+ counterions
(radius ) 1.868 Å and well depth ) 0.00277 kcal/mol) and
immersed for the MD simulation in a rectangular water box
(TIP3P)65 with a 10-Å-thick layer of water molecules (60
× 50 × 45 Å3 for UUCG and GAAA and 40 × 45 × 50 Å3

for GAGA systems). The RNA-solvent system was mini-
mized prior to the AMBER simulation as follows. Minimiza-
tion of the solute hydrogen atoms was followed by minimi-
zation of counterions and water molecules. Subsequently,
the hairpin was frozen, and solvent molecules with coun-
terions were allowed to move during a 10-ps-long MD run,
the purpose of which is to relax the density of the system.
After that, the nucleobases were allowed to relax in several
minimization runs with decreasing force constants applied
to the backbone phosphate atoms. After full relaxation, the
system was slowly heated to 298.15 K over 100 ps using 2
fs time steps and NpT conditions using a weak-coupling
scheme with a coupling time of 1 ps.66 The simulations were
carried out under periodic boundary conditions (PBC) in the
NpT ensemble (298.15 K, 1 atm) with 2 fs time steps. The
particle-mesh Ewald (PME) method67,68 was used to calcu-
late electrostatic interactions with a cubic spline interpolation
and ∼1 Å grid spacing, and a 10.0 Å cutoff was applied for
Lennard-Jones interactions with automatic rebuilding of the
buffered pair list when atoms moved more than 0.5 Å. The
SHAKE algorithm was applied to fix all bonds containing
hydrogen atoms. The SANDER module of AMBER 10.063

was used for simulations.
AMBER Force Fields. Standard AMBER force fields

ff94,25 ff99,58 and ff99bsc059 were used for simulations. In
addition, simulations were performed also with four variants
of alternative profiles of the glycosidic � torsion that were
suggested recently as modifications of the ff99 force field:

(i) The Ode et al.69 � parameters are based on quantum
chemical profiles obtained with high-accuracy in Vacuo
MP2/aug-cc-pVTZ//HF/6-31+G(d,p) energy calcula-
tions on small model compounds. The force field has
been suggested to be compatible with both ff99 and
ff99bsc0 basic parametrizations, and the respective

simulations are henceforth labeled as ff99�ODE and
ff99bsc0�ODE in the present paper. Note that this force
field has not been tested in production runs so far
except in our recent study on G-DNA quadruplexes,
where it was shown to bring no advantage over the
ff99 and ff99bsc0 force fields.

(ii) Reparameterization against the lower-quality in vacuo
QM profile (MP2/6-31G(d)//HF/6-31G(d) level) of
ribonucleosides of Yildirim et al.70 was performed.
The force field has not been tested for RNA simula-
tions so far, but it was shown to improve the syn vs
anti balance in nucleoside simulations. Although the
original paper does not acknowledge the latest
ff99bsc0 parametrization and considers the � param-
eters exclusively in the context of ff99, we decided to
test its performance with both ff99 and ff99bsc0. The
respective simulations are marked as ff99�YIL and
ff99bsc0�YIL.

(iii) Reparameterization based on a high-quality dispersion-
corrected71 DFT QM profile (PBE/6-311++G(3df,3pd)/
D-1.06-23//PBE/6-311++G(3df,3pd)/COSMO method)
of deoxyribonucleosides in a continuum water environ-
ment (this work and Zgarbova et al., manuscript in
preparation) labeled as ff99�OL-DFT and ff99bsc0�OL-DFT

was performed. (The label OL stands for Olomouc, see
affiliations.)

(iv) Reparameterization based on the high-level QM
profile (MP2/CBS//PBE/6-311++G(3df,3pd)/COS-
MO method) in continuum water considering weighted
parameters for C2′-endo deoxyribose and C3′-endo
ribose was performed; this variant is labeled ff99�OL

and ff99bsc0�OL (this work and Zgarbova et al.,
manuscript in preparation).

The OL-DFT and OL parameter files are provided in the
Supporting Information, while a full account of the param-
etrizations including extensive testing will be given separately
(Zgarbova et al., manuscript in preparation). The OL force
field should be considered as the final version; nevertheless,
we also provide some results obtained with the preliminary
OL-DFT version, as it provides important insights into the
sensitivity of the results to the parametrization.

Note that the modified � profiles are entirely independent
of the recent ff99bsc0 reparameterization of the R/γ torsional
profile, and therefore the ff99bsc0 force field is to be
independently cited if applied together with any of the �
terms. The ff99bsc0 is essential, particularly for DNA, in
modification of the preceding versions of the AMBER
Cornell et al. force fields.

To assess effect of salt concentration on the stability of
TLs, reference simulations under KCl salt excess (c(K+) ∼
0.45 mol/L, c(Cl-) ∼ 0.22 mol/L) conditions and using the
SPC/E water model72 were carried out. Parameters for K+

(radius, 1.593 Å; well depth, 0.4297 kcal/mol) and Cl-

(radius, 2.711 Å; well depth, 0.012 kcal/mol)73 were used.
CHARMM Simulations. MD simulations of selected

systems were also carried out with the CHARMM all27 force
field60 with the NAMD74 package (ver. 2.6) using the
following protocol. To avoid any differences in starting
geometries, the neutralized and solvated system prepared for
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AMBER simulations was used as a starting structure to
prepare CHARMM27 topologies and coordinates in the
CHARMM75 software package (ver. 34b2). The waters and
counterions were minimized in 2500 steps and shaken by
short NpT dynamics (100 ps) at 300 K and 1 atm. The system
was minimized prior to simulation in 3000 steps and then
slowly heated to 300 K over 100 ps using 1 fs time steps
and NpT conditions using Langevin dynamics.76,77 The
simulation was produced under periodic boundary conditions
in the NpT ensemble (300 K, 1 atm) with 1 fs time steps,
because the 2 fs integration step produced considerably less
stable trajectories for A-RNA stems. The particle-mesh
Ewald method was applied to calculate electrostatic interac-
tions (PME tolerance 10-6), and a 12.0 Å cutoff with an
8.0 Å switching distance was applied for Lennard-Jones
interactions. The protocol applied performed well in test
simulations on the B-DNA structure, in agreement with
literature data.78

Table 1 summarizes all simulations analyzed in this study.
The simulations were initially intended to be extended to
100 ns. However, some simulations were terminated earlier
because of a major degradation of the TLs, i.e., an unfolding
event in UUCG_charmm and the formation of a “ladder-
like” structure in GAGA_bcs0, GAGA_99�ODE, and
GAGA_bsc0�ODE simulations. On the other hand, the simu-
lations carried out with reasonably performing force fields
were extended to 300 ns (ff99bsc0�YIL and ff99bsc0�OL-DFT)
or to 0.8-1.0 µs (ff99bsc0�OL) to get better insight into the
simulation behavior.

Analyses were performed using ptraj (from AmberTools
package) and X3DNA.79 H-bonds were analyzed using in-
house software H-bonds (P. Banáš, http://fch.upol.cz/en/
software/) using a 3.1 Å cutoff for the H-bond distance and
40° for the hydrogen-H-bond donor · · ·H-bond acceptor
angle.

Results

Signature Interactions in the Tetraloops. As explained
in the Introduction, the UNCG and GNRA TLs are very
precisely structured recurrent RNA motifs that adopt their
native structure independently of their contexts. They
therefore possess several characteristic (signature) structural
features. For the UUCG TL, these include a tWS GL4/UL1

base pair, syn conformation of GL4, and C2′-endo sugar
puckers for UL2 and CL3 (Figure 1). There are four UUCG
signature H-bonds (Figure 2): UL1(O2′) · · ·GL4(O6), GL4-
(N1) · · ·UL1(O2), CL3(N4) · · ·UL2(pro-Rp), and UL2(O2′) · · ·
GL4(N7). The latter one is seen only in approximately one-
third of the high-resolution NMR structurally derived en-
sembles.17 UL1(O2) tends to form a bifurcated H-bond to
GL4(N1) and GL4(N2) in some X-ray structures.14-16 On the
other hand, the distance between GL4(N2) and UL1(O2) is
always larger than 3.3 Å in the high-resolution NMR
structure17 (see also Table 2). The CL3(N4) · · ·UL2(pro-Rp)
H-bond corresponds to a type 7 base-phosphate interaction
(7BPh23) between the CL3 base and UL2 phosphate.

The GNRA TLs include the tHS AL4/GL1 (“sheared”) base
pair37 complemented by three H-bonds (Figure 2): GL1(N2) · · ·

AL4(pro-Rp) (3BPh interaction, which is altered with the
GL1(N1/N2) · · ·AL4(pro-Rp) 4BPh interaction in MD or some
X-ray structures), GL1(N2) · · ·AL4(N7), and GL1(O2′) · · ·
RL3(N7).8 The NL2, RL3, and AL4 bases form a purine triple
stack.

UUCG Tetraloop Dynamics. AMBER Simulations: �
Reparameterizations Maintain Important Signature H-
Bonds and OVerall Integrity of the Tetraloop. In all UUCG
TL simulations with the standard AMBER force fields (with
standard � torsion, i.e, UUCG_94, UUCG_99, UUCG_bsc0,
UUCG_99SE, and UUCG_bsc0SE simulations), we observed
a loss of the signature UL1(O2′) · · ·GL4(O6) H-bond im-
mediately after the simulation started. This H-bond was
replaced by the UL1(O2′) · · ·UL2(O5′) H-bond (Figure 3A).
Despite the fact that the loops still stay, at first sight, locked
close to the starting structure, these changes are clear signs
of some force field imbalance. Considering the unambiguous
structural data, this simulation development is not satisfactory.

Table 1. Overview of MD Simulations of TL Systems
Carried Out

label force field
duration

(ns)

the first appearance
of “ladder-like”

structure80 (ns)a

UUCG_94 ff94 50 NO
UUCG_99 ff99 100 NO
UUCG_bsc0 ff99bsc0 100 NO
UUCG_99�ODE ff99�ODE 100 NO
UUCG_bsc0�ODE ff99bsc0�ODE 100 NO
UUCG_99�YIL ff99�YIL 100 NO
UUCG_bsc0�YIL ff99bsc0�YIL 300 NO
UUCG_99�OL-DFT ff99�OL-DFT 100 NO
UUCG_bsc0�OL-DFT ff99bsc0�OL-DFT 300 NO
UUCG_99�OL ff99�OL 100 NO
UUCG_bsc0�OL ff99bsc0�OL 800 NO
UUCG_charmm CHARMM27 50 NO
UUCG_99SEb ff99, KCl SE 100 NO
UUCG_bsc0SEb ff99bsc0, KCl SE 100 NO
GAAA_99 ff99 50 NO
GAAA_bsc0 ff99bsc0 100 NO
GAAA_99�ODE ff99�ODE 100 85
GAAA_bsc0�ODE ff99bsc0�ODE 100 NO
GAAA_99�YIL ff99�YIL 100 NO
GAAA_bsc0�YIL ff99bsc0�YIL 300 NO
GAAA_99�OL-DFT ff99�OL-DFT 100 NO
GAAA_bsc0�OL-DFT ff99bsc0�OL-DFT 300 NO
GAAA_99�OL ff99�OL 100 NO
GAAA_bsc0�OL ff99bsc0�OL 800 NO
GAAA_charmm27 CHARMM27 100 NO
GAAA_99K+c ff99, K+ 100 95
GAAA_99SEb ff99, KCl SE 100 NO
GAGA_99 ff99 100 36
GAGA_bcs0d ff99bsc0 25 20
GAGA_99�ODE

d ff99�ODE 15 5
GAGA_bsc0�ODE

d ff99bsc0�ODE 25 21
GAGA_99�YIL ff99�YIL 100 NO
GAGA_bsc0�YIL ff99bsc0�YIL 300 NO
GAGA_99�OL-DFT ff99�OL-DFT 100 NO
GAGA_bsc0�OL-DFT ff99bsc0�OL-DFT 300 NO
GAGA_99�OL ff99�OL 100 NO
GAGA_bsc0�OL ff99bsc0�OL 1000 NO
GAGA_charmm27 CHARMM27 100 NO
GAGA_99SEb ff99, KCl SE 100 50
GAGA_bsc0SEb ff99bsc0, KCl SE 100 NO

a “NO” means not observed. b Simulations in excess of KCl salt.
c Simulation under minimal salt conditions with Na+ ions replaced
by K+. d Simulations were terminated because a “ladder-like”
structure was irreversibly formed.
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Simultaneously with the disruption of the UL1(O2′) · · ·
GL4(O6) H-bond, we observed significant propeller twisting
(changing from -2° to ∼-25°) of the GL4/UL1 tWS base
pair and mainly a shift of syn GL4 � torsion from 60° to 40°
in all above-mentioned simulations (Table 2). The same shifts
of � torsion toward lower values in the syn region were also
observed for syn G+1 and A38H+ nucleobases in ff99 MD
simulations of the hairpin ribozyme (Supporting Information,
Table S1).80 This structural shift comes from the strain in
GL4 � torsion, as the energy profile of guanosine � torsion

in AMBER ff99 (Supporting Information, Figure S1) shows
that the minimum in the syn region equals 40°. On the basis
of a structural analysis of the above-mentioned MD simula-
tions, we suggest that the shift of GL4 � torsion is the primary
source of perturbation of the signature interaction.

All simulations with reparameterized � torsion prevented
the shift of GL4 � torsion, and the signature UL1-
(O2′) · · ·GL4(O6) H-bond was stable, except in some cases
where it was disrupted due to some unrelated perturbations
elsewhere in the structure (Table 2). Thus, UUCG_99�ODE,
UUCG_99�OL, UUCG_99�YIL, UUCG_bsc0�OL-DFT,
UUCG_bsc0�OL, and UUCG_bsc0�YIL were the most
stable trajectories keeping all signature H-bonds (Table
2). In other words, stable UUCG TL was observed in all
simulations with modified � torsion parameters, except
for UUCG_99�OL-DFT, showing an undesired R/γ flip of
the UL1 phosphate (see below) and UUCG_bsc0�ODE where
a “ladder-like” artifact of CS-1 and UL1 � torsions, described
below, occurred. CS-1 denotes stem cytosine at the 5′ side
of the TL, i.e., C5 in the presented model of UUCG
(Figure 1). This indicates that the modified � torsion
profiles locally improve sampling within the syn region.

The formation of the UL1(O2′) · · ·UL2(O5′) H-bond in
simulations with an unmodified � profile was likely partially
facilitated by modest shifts of ε and � torsions of CS-1 (ε
from -126° to ∼-150° and � from -80° to ∼-60°) and
UL1 (ε from -160° to ∼-175° and � from -100° to ∼-90°).
This backbone adaptation occurred in entirely all AMBER
UUCG simulations in the initial minimization and was
irreversible. This shift of ε and � torsions moved the UL2(O5′)
oxygen closer to the UL1(2′-OH) hydroxyl (from 3.4 Å in
the NMR structure to ∼3.0 Å in MD simulations), which
supported the formation of the new UL1(O2′) · · ·UL2(O5′)
H-bond. However, we do not consider this backbone adapta-
tion to be the most crucial force field problem, since in the
simulations with reparametrized � torsions the original
UL1(O2′) · · ·GL4(O6) H-bond remains stable despite the ε/�
shift.

ff99bsc0 Clearly ImproVes the Stability of γ Angle
Distribution. In the advanced stages of simulations (on the

Table 2. Basic Structural Characteristics of UUCG TL and H-Bond Populations Calculated from MD Simulationsa

Structures or
simulations

GL4(N1) · · ·UL1(O2)
(Å)

CL3(N4) · · ·UL2(pro-Rp)
(Å)

UL2(O2′) · · ·GL4(N7)
(Å)

UL1(O2′) · · ·GL4(O6)
(Å)

UL1 (O2′) · · ·UL2(O5′)
(Å)

GL4 �
(deg)

tSW UL1/GL4
propeller (deg)

NMR 2.7 ( 0.1 2.9 ( 0.1 2.9 ( 0.1 2.6 ( 0.1 3.4 ( 0.1 58 ( 4 -4.3 ( 4.5
X-ray 3.0 ( 0.1 2.9 ( 0.2 4.0 ( 0.5 2.7 ( 0.3 3.8 ( 0.2 60 ( 1 -7.8 ( 7.0
UUCG_94 88% 8% 0% 68% 8% 45 ( 11 -21 ( 11
UUCG_99 87% 9% 2% 65% 8% 48 ( 13 -22 ( 11
UUCG_bsc0 55% 68% 10% 14% 41% 42 ( 18 -32 ( 32
UUCG_99�ODE 90% 72% 54% 94% 4% 83 ( 13 -1 ( 13
UUCG_bsc0�ODE 74% 66% 50% 70% 18% 75 ( 17 -14 ( 22
UUCG_99�YIL 95% 76% 41% 87% 6% 65 ( 15 1 ( 11
UUCG_bsc0�YIL 92% 77% 46% 89% 6% 69 ( 17 2 ( 11
UUCG_99�OL-DFT 92% 36% 28% 83% 7% 67 ( 14 -8 ( 13
UUCG_bsc0�OL-DFT 93% 70% 50% 88% 9% 76 ( 14 -1 ( 11
UUCG_99�OL 93% 68% 42% 80% 15% 64 ( 15 -5 ( 12
UUCG_bsc0�OL 92% 71% 49% 85% 10% 72 ( 17 -3 ( 12
UUCG_99SE 82% 55% 8% 15% 53% 38 ( 15 -25 ( 12
UUCG_bsc0SE 79% 59% 6% 7% 57% 34 ( 13 -29 ( 11

a NMR values were averaged from a set of 20 structures taken from PDB 2KOC.17 X-ray values were averaged from X-ray structures
1F7Y (res. 2.8 Å),14 1I6U (res. 2.6 Å),15 and 1FJG (res. 3.0 Å).16 Some of the values are presented as average ( standard deviation.
H-bond populations are calculated from respective MD simulations of UUCG TL (see Methods).

Figure 3. The MD snapshots (colored by atom types)
compared with high-resolution NMR structure (in red) showing
structural problems seen in simulations of the UUCG tetraloop
(some atoms are not shown for clarity, and important
parts are shown as sticks). (A) The disruption of the
UL1(O2′) · · ·GL4(O6) H-bond and formation of a new
UL1(O2′) · · ·UL2(O5′) H-bond observed in all MD simulations
with standard � profiles are highlighted by the blue arrow, while
the simultaneous decrease of � of GL4 leading to a change in
the UL1/GL4 propeller is shown by the red arrow. (B) The UL2

phosphate R/γ flip is depicted by the black arrow. See the
text for full details.
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tens of nanoseconds time scale), we evidenced further
problems due to a disruption of the CL3(N4) · · ·UL2(pro-Rp)
7BPh interaction in UUCG_94, UUCG_99, and UUCG_
99�OL-DFT trajectories. This was caused by R/γ flip of the
UL2 phosphate (Figure 3B). The flip involved a shift of
R(UL2) from ∼-160° to ∼-50°, ε(UL1) from ∼-170° to
∼-100°, and γ(UL2) from ∼50° to ∼-170°. It further
correlated with C3′-endo to C2′-endo UL2 sugar repuckering.
In all cases, the UL2 phosphate remained distorted until the
simulation ended. The γ torsion of the UL2 phosphate
sampled the gauche(+) region in all ff99bsc0 simulations
except for UUCG_bsc0�ODE and UUCG_bsc0�OL, where we
also observed weakly populated (population about ∼5%) and
fully reversible γ-trans substates. Thus, in contrast to ff99
simlations, the bsc0 correction prevents an irreversible R/γ
flip of the UL2 phosphate to γ-trans. The ff99bsc0 force field
has been designed to prevent pathological γ-trans substates
in B-DNA MD simulations.59 It is worth noting that the
native position of γ(GL4) is trans due to a sharp bend of the
RNA strand at the tip of UUCG TL. Interestingly, γ(GL4)
kept its native γ-trans orientation in all simulations with
ff99bsc0, despite some expectations that ff99bsc0 may
occasionally overcorrect the γ-trans substates.61,64 Clearly,
at least when starting simulations from the native structure,
ff99bsc0 is superior to ff99 for the UUCG TL, as it prevents
one undesired irreversible γ-trans flip while keeping the
native γ-trans nucleotide stable.

The Occurrence of High-anti Substates in Correlation
with the Force Field Artifact of Forming a “Ladder-Like”
Structure. An almost reversible disruption of the TL signature
accompanied by a shift of � torsions of CS-1 and UL1 from
the anti to the high-anti region (from ∼-150° to ∼-90°)
and breaking of the GL4(N1) · · ·UL1(O2) and UL1-
(O2′) · · ·GL4(O6) H-bonds was observed in UUCG_bsc0 and
UUCG_bsc0�ODE simulations (Figure 4). The shift of �
torsions to the high-anti region corresponds to a recently
discovered common force field artifact named a “ladder-like”
structure of RNA stems, because the most characteristic
feature of the “ladder-like” structure is a transition of �
torsion to the high-anti region with a value ∼-85° (the exact
value slightly depends on the system and force field).80 In a
fully developed “ladder-like” structure of a duplex, besides
the shift of the � torsion, the sugar puckering, ε and �
torsions, slide, twist, and peaks in the P-P radial distribution
function are also modestly affected by the transition, which
in addition is not reversible (see ref 80 for more details). In
the present simulations, although the CS-1 and UL1 � torsions
later returned to the anti region, the signature UL1-
(O2′) · · ·GL4(O6) H-bond was not fully stabilized and expe-

rienced fluctuations. As will be discussed below, the
unmodified ff99 and �ODE

69 parametrizations support the
formation of the “ladder-like” artifact, while the remaining
three � reparameterizations appear to prevent its formation.
It is entirely consistent with the behavior of UUCG simula-
tions. The independent ff99bsc0 modification of R/γ dihedrals
is neutral with respect to the “ladder-like” structure formation.

CHARMM Simulations. The MD simulation of UUCG
TL carried out with a CHARMM27 force field showed
complete melting during the first 10 ns. This is in full
agreement with recently published simulation data from Deng
and Cieplak.28 The signature UL1(O2′) · · ·GL4(O6) and
GL4(N1) · · ·UL1(O2) H-bonds were broken at ∼0.5 ns, and
GL4 departed from its initial position. The CL3 nucleobase
unstackedfromUL1at9.5ns,breakingits7BPhCL3(N4) · · ·UL2(pro-
Rp) H-bond. The ribose pucker of CL3 switched from C2′-
endo to C3′-endo at 20 ns, and GL4 switched from a syn to
an anti orientation at ∼40 ns. Stem base pairs were also not
stable and exhibited frequent breathing.

GNRA Tetraloop Dynamics. In simulations of GNRA
TLs with the standard � AMBER force fields, we typically
observed a transition of the A-RNA stem bearing the GNRA
TL to the underwound “ladder-like” structure (Figure 5). The
“ladder-like” structure is a force field artifact occurring on
the tens of nanoseconds time scale, which we first described
in our study on hairpin ribozymes.80 This transition was
always preceded by an irreversible disruption of the GNRA
signature. The “ladder-like” structure of the stem bearing
GNRA TL occurred with standard AMBER force fields as
well as with the � torsion reparameterization of Ode et al.69

(see Table 1). On the other hand, it has been prevented by

Figure 4. Structures of UUCG TL at the beginning of the UUCG_bsc0 simulation, at 50 ns and at 90 ns, showing the distortion
of the UUCG tetraloop. CL3 is not shown, for clarity.

Figure 5. Ladder-like conformer as observed in a simulation
of the GNRA tetraloop with AMBER force fields, unless the �
torsion profile is appropriately modified. Initial geometry is on
the left, and “ladder-like” conformer is on the right.
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the other three � torsion reparameterizations (�OL-DFT, �OL,
and �YIL) and was also not observed in CHARMM simulations.

Although the formation of the “ladder-like” structure was
shown primarily to be the force field artifact of A-RNA
stems80 (also see below), a detailed structural analysis, mainly
the monitoring of � torsions, revealed that in our present
case the formation of a “ladder-like” structure in the stem
was typically preceded by the structural degradation of
GNRA TL. Thus, it appears that the loss of the TL integrity
facilitates the “ladder-like” transition. Both issues are,
however, most likely interconnected. More specifically, the
loss of structural integrity of GNRA TL was mainly
facilitated by a reversible flip of the �/γ torsions of the RL3

phosphate from the trans/gauche(+) to the gauche(+)/trans
conformation (Figure 6). This �/γ flip increased the buckle
of the tHS AL4/GL1 base pair from ∼5° to ∼60° (Figure 6).
Although the �/γ flips are reversible, we suggest that the
increased AL4/GL1 buckle causes some steric strain of the
stem-loop junction and accelerates the structural degrada-
tions of the system including a transition of the stem to a
“ladder-like” structure (when the force field does not prevent
this “ladder-like” artifact).

As noted above, we did not observe any formation of a
“ladder-like” structure in the simulations with �OL-DFT, �OL,
and �YIL reparameterizations. However, simulations with ff99
(combining ff99 with either the �OL-DFT, �OL, or �YIL

parametrization) exhibited serious distortion of GNRA TL
caused by either the RL3 �/γ flip or less often by a flip of
the R(AL2) torsion from trans to gauche, usually accompanied
by the shift of γ(AL2) torsion from gauche(+) to trans.
Furthermore, these flips caused disruption of GNRA signa-
tures in four of the six ff99 simulations with �OL-DFT, �OL,
and �YIL (GAGA_99�YIL, GAGA_99�OL, GAAA_99�YIL, and
GAAA_99�OL-DFT). On the other hand, the simulations

combining ff99bsc0 with �OL-DFT, �OL, or �YIL parametriza-
tions exhibited stable behavior of GNRA TL on the hundreds
of nanoseconds time scale. It should be noted that both RL3

�/γ and AL2 R/γ flips were still present in simulations with
the bsc0 correction; however, these flips were reversible and
short-lived and thus did not result in distortion of GNRA
TL.

The RL3 �/γ flip, which seems to be the main source of
GNRA TL destabilization in AMBER simulations, might be
a consequence of imperfect force field parameters of � and
γ torsions. Nonetheless, the RL3 phosphate undergoing the
�/γ flip is positioned in proximity to the AL2 phosphate (P-P
distance in the X-ray structure is 5.9 and 5.8 Å in GAGA
and GAAA, respectively) because of sharp inversion of the
sugar-phosphate backbone path. Thus, the RL3 �/γ flip might
also be alternatively caused by insufficiently compensated
electrostatic repulsion between these two phosphates or some
other imbalance of the intermolecular terms. This is in
agreement with the fact that structural degradation is initiated
by the flip of either RL3 or AL2 phosphate. However, the
involvement of ff99bsc0 correction significantly attenuates
these phosphate flips, although it is not able to completely
eliminate them. Thus, it seems that both imperfect R/�/γ
torsion parameters and an imbalance of the intermolecular
terms can contribute to structural degradation of GNRA TL
in the ff99 force field. Nevertheless, the present GNRA TL
simulations are substantially improved when combining the
bsc0 correction together with the �OL-DFT, �OL, or �YIL

modification.
We extended the ff99bsc0�OL force field simulations of

GAAA and GAGA systems to 0.8 and 1.0 µs, respectively,
to test the performance of this force field on the microsecond
time scale. We found that the GAGA_bsc0�OL simulation
was entirely stable on the microsecond time scale. However,

Figure 6. Typical progression of GNRA tetraloop AMBER simulations. Left: simulations without the � correction or with Ode et
al.’s correction illustrated by a 25 ns GAGA_bsc0 simulation. Right: simulations with �OL-DFT, �OL, and �YIL variants illustrated by
a 1 µs GAGA_bsc0�OL simulation. The upper graphs present a time evolution of the �(GL3) torsion (black line), γ(GL3) torsion
(red line), and mean � torsion averaged over either stem nucleobases (green line) or the GNRA tetraloop (blue line). The middle
graph shows the GL1/AL4 buckle, and the lower graph presents the GNRA tetraloop signature H-bonds: GL1(N2) · · ·AL4(N7),
GL1(N2) · · ·AL4(pro-Rp), and GL1(O2′) · · ·GL3(N7) in black, red, and green, respectively.
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we observed conformational changes of the TL region in
the GAAA_bsc0�OL simulation after 0.56 µs. The deforma-
tion of GAAA TL is related neither to the flip of the RL3

and AL2 phosphates nor to the formation of a “ladder-like”
structure. It may be caused by some other force field
imbalances which become visible on the microsecond time
scale (see Supporting Information, Figure S2).

Neither the formation of a “ladder-like” conformation nor
a RL3 �/γ flip was observed in simulations with CHARMM27.
However, we observed local switches of AL2 and RL3

phosphates including a rapid fluctuation of R(AL2) between
native trans and gauche(+), R(RL3) between trans and native
gauche(+), and rapid switches of ε and � in all four TL
nucleobases that were accompanied by structural distortion
of the GNRA TL in both CHARMM27 simulations. None-
theless, the most distinctive feature of CHARMM27 simula-
tions was the instability of the stem bearing the GNRA TL
that exhibited extensive terminal base pair breathing followed
by the disruption of base-pairing in the stem and subsequent
unfolding of the structure, similar to what has been reported,
for example, for stems in simulations of kissing-loop
complexes.81,82

Simulations of A-RNA Stems. The Supporting Informa-
tion describes a set of simulations of short canonical A-RNA
stems. These simulations illustrate rather visible differences
between the modified � parametrizations in the description
of the canonical A-RNA structure, mainly a different
inclination of base pairs with respect to the helical axis.
Although not related directly to the main topic of this paper,
these A-RNA simulations provide further insight into the
sensitivity of A-RNA simulations to force field parameters
and help understanding of the simulation behavior of the TLs.

Discussion

The 5′-UNCG-3′ and 5′-GNRA-3′ RNA tetraloops (TL) are
the two most important classes of RNA hairpin loops. These
thermodynamically very stable TLs belong to the most
prominent RNA motifs, i.e., recurrent RNA building blocks
with a precisely defined context-independent 3D structure.
While the UNCG TLs play a key role in RNA folding, the
GNRA TLs are involved in tertiary interactions and recogni-
tion processes.

As with each RNA motif, the UNCG and GNRA TLs are
characterized by signature molecular interactions which
define their native structure and, subsequently, following the
isostericity principle, their consensus sequences.33 The 3D
signature of the studied UUCG TL includes the tWS GL4/
UL1 base pair, syn conformation of GL4, south C2′-endo
pucker of UL2 and CL3, and four UUCG signature H-bonds:
UL1(O2′) · · ·GL4(O6), GL4(N1) · · ·UL1(O2), CL3(N4) · · ·UL2(pro-
Rp), and UL2(O2′) · · ·GL4(N7). The UL1(O2′) · · ·GL4(O6) and
CL3(N4) · · ·UL2(pro-Rp) H-bonds are unambiguous. The
UL2(O2′) · · ·GL4(N7) H-bond is seen only in approximately
one-third of the high-resolution NMR structure ensemble.17

The GNRA TLs are structured with a tHS AL4/GL1 (“sheared”)
base pair37 complemented by three H-bonds: GL1(N1/
N2) · · ·AL4(pro-Rp), GL1(N2) · · ·AL4(N7), and GL1(O2′) · · ·
RL3(N7).8 The GNRA signature further includes a NL2, RL3,
and AL4 triple base stack.

Although it cannot be ruled out that the TLs (especially
the GNRA one) exhibit some structural dynamics or can be
remodeled in some structural contexts, structural biology data
as well structural bioinformatics convincingly show that the
above-described signature interactions define the genuine
native structures of these RNA TL classes.8,37 Therefore,
correct computational methods should be capable of repro-
ducing the characteristic structures of UNCG and GNRA
RNA TLs, identifying them as global minima, and domi-
nantly sampling them. However, as noted in the literature, a
correct force field description of nucleic acid hairpin loops
may be a considerable challenge for the contemporary
molecular mechanical force fields.57 Hairpin loops are
characterized by a complex mixture of different molecular
interactions and noncanonical backbone conformations and
are substantially exposed to the solvent.

The RNA TLs, due to their small size and biochemical
importance, became a favorable target for simulation studies
in the past several years. These studies were primarily
concentrated on the folding of the TLs, using sophisticated
enhanced sampling methods and massive large-scale parallel
computations.28,29,50 These impressive studies clearly dem-
onstrated the basic capability of the simulation technique to
correctly identify the stem base pairing and subsequently fold
the structure. However, less attention has been paid to the
exactness of the final or most stable structures identified as
the native states. Closer inspection of the published data
reveals that at least in some cases the predicted topology is
not fully consistent with the native topology as known from
structural biology.

In the present paper, we have considered a less ambitious
but perhaps no less important task. We investigate the
capability of the established force fields to keep the native
topology of the UNCG and GNRA TLs. We analyze typical
structural rearrangements seen on the ∼100+ ns time scale
and their force field dependence. Simultaneously, we use the
TLs as model systems to test four recent attempts (two of
them from our laboratories) to adjust the � glycosidic torsion
profile of the Cornell et al. force field, in addition to the
basic ff99 and ff99bsc0 force field variants. The ff99bsc0 is
the only viable AMBER force field for DNA simulations,
while RNA was until now considered to be almost equiva-
lently well described by all basic Cornell et al. force field
variants.57,59 The � modifications were derived on the basis
of QM computations using different model systems, different
QM levels, and different overall philosophies of parametriza-
tion (see the Introduction and Methods and the Supporting
Information for parameters). There are considerable differ-
ences among the four suggested � glycosidic torsion profiles,
while they also substantially differ from the original param-
etrization (supplementary Figure S1B, Supporting Informa-
tion). We also performed a set of simulations on short
A-RNA stems (Supporting Information). Although the A-
RNA simulations are not directly related to the main topic
of this paper, these A-RNA simulations provide insights into
the sensitivity of A-RNA simulations to force field param-
eters and help with understanding the simulation behavior
of the TLs. The A-RNA simulations indicate that adjusting
the � torsion has a visible effect on the calculated inclination
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and base pair roll of A-RNA helices (see Supporting
Information, Table S3). The global (helical) structure pa-
rameter inclination and local (wedge) parameter roll are
mathematically interconnected. They characterize the degree
to which the base pairs in the helix adopt the A-RNA
geometry having the base pairs inclined with respect to the
global helical axis. Due to helical twisting, the inclination
then leads to base pair roll in the local base pair step
coordination frames.83,84 The �OL-DFT and �OL variants of �
adjustment modestly reduce the inclination/roll values com-
pared with simulations using the unmodified force field (see
Supporting Information, Table S3). The �YIL adjustment leads
to a qualitative reduction (and underestimation) of inclination/
roll (see Supporting Information, Table S3). The impact of
these effects on RNA simulations is under further investiga-
tion. The �ODE parametrization destabilizes the A-RNA by
promoting the “ladder-like” structure. This behavior reflects
the balance of anti and high-anti regions of the respective
parametrizations.

For the tetraloops, we have obtained the following results.
In all UUCG TL simulations with the standard AMBER force
fields (with unmodified � torsion), we observed a loss of
the signature UL1(O2′) · · ·GL4(O6) H-bond immediately after
the simulation start, i.e., within few picoseconds. This
H-bond is replaced by the UL1(O2′) · · ·UL2(O5′) H-bond
(Figure 3A). Despite the fact that the loop subsequently
remains close to the starting structure, the loss of the
signature interaction is not in agreement with structural data.
Simultaneously with the disruption of the
UL1(O2′) · · ·GL4(O6) H-bond, we observed significant propel-
ler twisting of the GL4/UL1 tWS base pair and mainly a shift
of GL4 � syn torsion from 60° to 40°. We argued that the
GL4 � torsion shift is the primary source of perturbation of
the signature interaction. All studied modifications of �
torsions (i.e., �ODE, �YIL, �OL-DFT, and �OL) improve the
behavior most likely because they provide a more realistic
description of the syn region of G (Supporting Information,
Figure S1B).

Further analysis indicates that the use of bsc0 correction
improves the simulation behavior by stabilizing the observed
distribution of the γ backbone angles, mainly by preventing
the undesired and irreversible γ-trans flip of the UL2

phosphate. Interestingly, the native γ-trans flip of GL4 is kept.
Therefore, this TL is best described when using the ff99bsc0
basic parametrization with some of the � torsion adjustments.

The most significant feature of GNRA simulations with
the standard variants of the AMBER force field is a loss of
the GNRA integrity on a scale of dozens of nanoseconds
followed by a subsequent “ladder-like” conversion of the
whole helical stem (Figure 6). Adding the suggested �
corrections (except of �ODE) improves the behavior of the
GNRA TL simulations and prevents larger degradations on
the ∼100 ns time scale, which is the typical time scale for
presently published RNA simulations. The most likely reason
why the three successful � corrections improve the GNRA
simulation behavior is the change of the profile in the high-
anti region compared to that in the anti region (Supporting
Information, Figure S1B). Compared with the basic ff99/
ff99bsc0 parametrizations, �OL-DFT and �OL bring a modest

penalty to the high-anti region, which however seems to be
enough to prevent the forming of a “ladder-like” structure.
The �YIL works in the same direction, but the high-anti
penalty is much more vigorous. The �ODE rather supports
the high-anti � region, and that is why it does not prevent
the ladder-like artifact. Note that despite the overall improve-
ment the GNRA simulations exhibit some local dynamics
which may indicate some more subtle imbalances. This will
require further studies. We noticed reversible flips of �/γ
torsions of the RL3 phosphate from the trans/gauche(+) to
the gauche(+)/trans conformation (Figure 6) which are
associated with a dramatically increased buckle of the GL1/
AL4 base pair from ∼5° to ∼60°. Such base pair distortion
may accelerate further undesired rearrangements of the TLs.
The use of ff99bsc0 correction improves the simulation
behavior by stabilizing the native conformation of TLs
phosphates but does not completely prevent these flips. We
need to keep in mind that some of the observed dynamical
effects may be related to imbalances of the intermolecular
terms of the force field. In such a case, the ability of the
torsion angle adjustments to improve the simulations may
be limited. As noted above, we suspect that the lack of a
fully balanced description of the interphosphate repulsion
may contribute to the observed backbone dynamics. A
balanced description of some such effects may thus require
the development of polarization force fields or at least some
reparameterization of the solvation terms. Taken together,
the GNRA TL is best described by the ff99bsc0 basic
parametrization with �YIL, �OL-DFT, or �OL adjustments.

In summary, our data show that three of the � glycosidic
torsion profiles, namely, �OL-DFT, �OL, and �YIL, improve the
description of the TLs, especially when combined with
the ff99bsc0 basic parametrization.59 Mainly, they prevent
the formation of the degrading “ladder-like” structures of
RNA stems, which break down the simulated GNRA
tetraloops. The “ladder-like” conformation is associated with
an excessive high-anti shift of the � torsion.80 On the other
hand, the � glycosidic torsion reparameterization of Ode et
al.69 is much less suitable for RNA simulations, as it
accelerates the formation of the ladder-like structures. All
four � modifications locally improve the description of the
syn region, which stabilizes the UUCG TL simulations.
Again, bsc0 is to be used as the basic force field for the
UUCG simulation. The present results, however, should be
taken as preliminary, and considerably more extensive tests
on numerous different RNA and DNA systems are under
way. We would like to stress that although some of the �
torsion adjustments show significant potential for improving
RNA simulations, mainly by preventing the “ladder-like”
structure, it cannot be ruled out that we will in the future
identify also a worsening of some other properties of the
simulated molecules.

When assessing the significance of the results, we have
to make a few cautionary notes. First, the � torsion repa-
rameterizations are applicable exclusively to RNA. We have
tested them (not shown) also for B-DNA and DNA quadru-
plex loops, and they do not improve DNA simulations. In
fact, it appears that fine-tuning of the � torsion simultaneously
for DNA and RNA is not possible, unless some other
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parameters are modified too. This is related to the second
cautionary comment. When using simple analytical force
fields, the description of the simulated system is unavoidably
only approximate, despite careful parametrization procedures.
Thus, the force field is inescapably physically inexact and
incomplete. Therefore, the impact of adjustments of the
individual torsions, although potentially improving the
simulation performance, should not be overrated. The physi-
cally inexact torsional potentials are used to approximate the
effective overall sum of many diverse physical contributions.
The QM reparameterization of torsions does not per se
guarantee that the simulations are subsequently improved,
as the force field performance depends on the overall balance
of all of the force field terms. Therefore, before any
application of a modified force field, it must be carefully
tested for relevant nucleic acid systems. It is therefore a rather
unusual practice that the �ODE and �YIL parametrizations were
made available without any testing.69,70 In addition, it is well-
known that improving one feature of the simulated systems
may have undesired side effects elsewhere. This explains
why the � torsion adjustments tested here do not improve
the behavior of DNA simulations.

For the sake of completeness, we also performed limited
simulations using the CHARMM27 force field. The main
dynamics that we noticed in GNRA TLs are phosphate flips
and fluctuations, similar to those reported above for the
AMBER simulations. Nevertheless, the simulated structures
were later destabilized in their stem regions (base pair
fluctuations and fraying), which ultimately also affected the
TLs. Note that the simulations were carried out with quite
short stems. Such reduced stability of the short stems is
consistent with literature data.81 The UNCG TL trajectory
was unstable. This simulation result is identical to more
extensive data reported and in more detail described by Deng
and Cieplak.28

The 100+ ns simulations are sufficient for many useful
applications, such as the very basic MD characterization of
existing RNA structures. Note that perturbation of the TLs
may cause bias in the overall assessment of the data even
when the TL is not the primary focus of a given simulation
study. Therefore, stabilization of the RNA TLs on this time
scale is important. Work is in progress to investigate the TLs
using much longer simulations and also using substantially
larger RNA systems to prevent eventual end effects.
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Abstract: Monte Carlo free energy perturbation (MC/FEP) calculations have been applied
to compute the relative binding affinities of 17 congeneric pyridazo-pyrimidinone inhibitors
of the protein p38R MAP kinase. Overall correlation with experimental data was found to be
modest when the complexes were hydrated using a traditional procedure with a stored solvent
box. Significant improvements in accuracy were obtained when the MC/FEP calculations
were repeated using initial solvent distributions optimized by the water placement algorithm
JAWS. The results underscore the importance of accurate placement of water molecules in
a ligand binding site for the reliable prediction of relative free energies of binding.

Introduction

The accurate computation of free energies of binding of
ligands is an important goal for computational chemistry
that has the potential to improve the efficiency of drug
discovery.1,2 Numerous computational methodologies ex-
ist, but among these, free energy simulations are particu-
larly attractive because they provide a formally rigorous
way to compute free energies of binding. Nevertheless,
progress is hindered by the limitations of classical force
fields, difficulties in adequate sampling of protein and
ligand flexibility with Monte Carlo (MC) or molecular
dynamics methods (MD), and challenges in accurately
taking into account changes in hydration.3-7

This report focuses on the impact of the initial place-
ment of water molecules in a protein binding site on
computed binding affinities of ligands. There is significant
evidence in the literature that the computed free energies
of binding can be strongly affected by the number and
positions of water molecules present in a protein binding
site.8-11 For instance, information about the locations and
thermodynamic properties of water molecules has been
shown to substantially improve the scoring of protein-ligand
interactions.12 However, depending on the nature of the
system under study, impossibly lengthy MC or MD

simulations may be required before an equilibrium dis-
tribution of water molecules in the protein-ligand binding
site is obtained. To efficiently address this issue, the water
placement algorithm JAWS was recently developed.13 The
procedure has been shown to accurately detect hydration
sites in protein-ligand complexes and has been used in
conjunction with Monte Carlo free energy perturbation
(MC/FEP) simulations to rationalize changes in free
energies of binding for analogs that expel ordered water
molecules from a protein binding site.6 The preceding
study, however, was concerned with a small number of
protein-ligand complexes, where clear crystallographic
evidence supporting a change in hydration between
different analogs was available. Further investigation is
desirable, especially in the context of lead optimization,
where a large number of structurally related compounds
may be considered, and for which subtle changes in
hydration could affect the outcome of the free energy
calculations. For this purpose, a series of 17 inhibitors of
the protein p38R MAP kinase, previously reported by
Pearlman and Charifson,14 was chosen for detailed
analyses (Figure 1). It is an attractive data set since it
reflects a classic problem in medicinal chemistry, the
optimal choice of substituents on a benzene ring. Fur-
thermore, the series spans 2-3 orders of magnitude in
activity, it involves typical small changes in substituents
for a lead optimization exercise,2 and it has been used as
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a benchmark to test alternative computational approaches
for activity predictions.14,15

Methods

Protein Setup. An X-ray crystal structure of p38R MAP
kinase in complex with a pyrido-pyrimidinone inhibitor (PDB
ID: 1OUY),17 which is very similar to 17, provided the
structural starting point. The ligand from the crystal structure
was replaced with the parent ligand 1, which was constructed
with the program BOSS,18 and protein and ligand Z matrixes
were prepared using the programs chop and pepz.18 Protein
residues with any atom within 17.5 Å of a ligand atom were
retained. The degrees of freedom of the side chains of protein
residues with any atom within 12.5 Å of a ligand atom were
sampled during the MC simulations. Backbone degrees of
freedom and side chain bond lengths were kept frozen
following a short conjugate-gradient relaxation. The net
charge of the systems was set to zero by neutralizing protein
residues distant from the ligand. The protonation states of
histidine side chains were assigned with the assistance of
the software PROPKA 2.0.19 The OPLS-AA force field was
used for the protein.20

Ligand Setup. Initial structures were generated using the
molecule growing program BOMB.21 The unsubstituted
inhibitor 1 provided the core to grow the desired analogs.
For consistency, the inhibitors were numbered as originally
reported,14 with the addition of the 1,3-difluoro compound

as 17. As the aromatic ring to which the substituents are
attached is capable of rotating relative to the rest of the
molecule, it is possible for the ligand to bind in two
alternative binding modes, related by a 180° flip around the
thioether bond (Figure 1). As these rotamers are not expected
to interconvert during the MC simulations, structures were
generated for both binding modes. For the MC simulations,
the ligands were treated as fully flexible, and their energetics
were represented with the OPLS/CM1A force field.22 The
CM1A atomic charges were scaled by 1.14.23

Solvent Setup. For the ligands alone in water, a 25 Å
water cap was used containing ca. 2000 TIP4P water
molecules. Each protein-ligand complex was solvated by
ca. 1250 TIP4P water molecules in a ca. 25 Å radius water
cap. A half-harmonic potential with a force constant of 1.5
kcal/mol/Å2 was applied to water molecules at distances
greater than 25 Å from the center of the system to prevent
evaporation. The initial solvent distribution was derived from
a stored solvent box using the default procedure with the
MCPRO 2.1 program.18 Specifically, a protein or ligand atom
near the center of the binding site is taken as the origin of
the system, and a cube containing 27 images of an equili-
brated (298 K, 1 atm) cube of 512 TIP4P water molecules
is centered on it. Each of the 13 824 water molecule is
considered, and one is deleted if its oxygen atom is found
to be within 2.5 Å of any non-hydrogen atom of a solute, or
if it is outside the system boundary defined by the cap radius.

Figure 1. Left: Investigated inhibitors and measured activities for the inhibition of kinase activity with IC50 values in M (ref 14).
Right: Computed image of ligand 5 bound in the “R1, R2” pose to p38R MAP kinase. As 180° flips of the thiophenyl group are
not observed in the simulations, the R1 and R2 positions are considered distinct from the R4 and R5 positions. In the “R1, R2”
pose, ligands 14 and 15 are able to hydrogen bond to nearby Asp168, drawn in thicker sticks. For clarity, some protein residues
and all protein hydrogen atoms have been omitted. Compound 18, which was not in the experimental study, was used as a
convenient intermediate for the MC/FEP calculations. Image prepared using the software VMD.16
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Though this straightforward procedure is typical of MC and
MD programs, the number of retained water molecules and
their initial coordinates depend on the choice of center atom.
In principal, any associated artifacts should be removed if
the MC or MD sampling is complete. However, it is easy to
imagine that, for example, water molecules could be absent
from or trapped in solute pockets and not be able to diffuse
in or out of the pocket in the course of a simulation.

Alternatively, the initial water placement for the protein-
ligand complexes was determined using the JAWS algorithm.
The details of JAWS are described elsewhere.13 Briefly, a
3-D cubic grid with 1 Å spacing is positioned to envelop
the binding site. The grid region is defined by overlapping
spheres of 4 Å radius, centered on user-selected solute atoms
in the binding site. MC simulations are then performed to
first find potential hydration sites and then to determine their
occupancies. The putative hydration sites are detected by
allowing “θ” water molecules to sample the grid volume
while simultaneously scaling their intermolecular interactions
between “on” and “off”. The full system that is simulated
consists of the protein, ligand, θ-water molecules, and regular
water molecules. After the most probable sites are identified,
a new MC simulation is run with θ water molecules
constrained near the sites and with θ sampling. The absolute
binding affinity of a water molecule at a given site is
estimated from the ratio of probabilities that the water
molecule is “on” or “off”. The locations of hydration sites
were determined using 5 million (5 M) MC configurations
with sampling of just the water molecules, followed by 10
M configurations that sampled the water, protein, and ligand
degrees of freedom. Then, the second phase covered 50 M
configurations to estimate the occupancy of the sites.

Free Energy Calculations. Relative binding free energies
for the ligands were computed from the standard thermo-
dynamic cycle evaluating the free energy change in solution
and in complex with the protein.1-3 The free energy changes
were computed with the MCPRO 2.1 program,18 using
Metropolis MC simulations to sample configurations of the
system,24 the single-topology technique for the structural
perturbations,25 and 11 windows of simple overlap sampling
to compute the free energy change between the initial and
final ligand structures.26,27 For the ligands alone in water,
each FEP window consisted of 10 M configurations of
equilibration and 20 M configurations of averaging. For the
protein-ligand complexes using the default water setup,
the equilibration period was 12.5 M configurations for the
first window and 10 M for the subsequent 10 windows. The
windows were run serially; the initial configuration for
windows 2-11 was based on the last configuration of the
previous window and was well equilibrated. The simulations
where the initial solvent coordinates came from the JAWS
calculations were run at a later date using a higher-throughput
protocol, whereby the 11 windows for each FEP calculation
were run in parallel on 11 processors. In this case, equilibra-
tion for each window entailed 5 M configurations of water-
only sampling, followed by 10 M configurations of full
equilibration. For both protocols, the averaging period for
each window was 10 M configurations. The averaging for
the JAWS-based calculations was then extended to 20 M

configurations for further checking of convergence. In all
cases, evaluation of the potential energy employed 9 Å
residue-based cutoffs, and the MC simulations were run at
298 K. The JAWS procedure takes about the same amount
of computer time as running 2-3 FEP windows, so it adds
ca. 25% to the overall computational effort.

A set of perturbations was devised to compute free
energies of binding for all analogs relative to ligand 1. In
order to minimize the steric and electrostatic changes in each
perturbation, consistent with past FEP studies, larger ana-
logues were perturbed in multiple steps, e.g., OHf F f H
or Cl f F f H.11,28 Full details of all perturbations are
provided in the Supporting Information. To account for the
two possible “R1, R2” or “R4, R5” poses for the unsym-
metrical ligands 4-17, the relative free energies of binding
of each pose were combined to produce an overall free
energy of binding ∆∆G using eq 1

where R is the ideal gas constant, T is 298 K, and ∆∆GR1,R2

and ∆∆GR4,R5 are the relative free energies of binding of
the two poses. The second term in eq 1 penalizes the
computed free energies of binding of the unsymmetrical
ligands 4-17 by RT ln 2 because they are relative to the
symmetrical ligand 1. Thus, when the relative free energies
of binding of the two poses differ by greater than ca. 2 kcal/
mol, the free energy of binding is essentially that of the more
favorable pose plus RT ln 2. Alternatively, if the relative
free energies of binding of the two poses are the same, the
RT ln 2 penalty is removed.

Though in this study the JAWS calculations were only
applied to the initial state, the FEP calculations were run
from the larger to smaller ligand to minimize the possibility
of trapping water molecules by growing in the opposite
manner. Another use for JAWS-like protocols would be to
evaluate the preferred hydration pattern for the initial and
final states of a proposed free-energy calculation. If signifi-
cant differences were detected that would likely not be
overcome by normal sampling, then alternative perturbation
pathways could be considered.

Analysis. The agreement between predicted and measured
free energies of binding was assessed by computing root-
mean square deviations (RMSDs), mean unsigned errors
(MUEs), and predictive indices (PIs). The latter has been
proposed by Pearlman and Charifson to measure the quality
of a rank-ordering by the potency of a series of ligands and
is computed according to eq 2,14

∆∆G ) -RT ln[exp(-∆∆GR1,R2/RT) +
exp(-∆∆GR4,R5/RT)] + RT ln 2 (1)

PI )
∑
j>i

∑
i

wijCij

∑
j>i

∑
i

wij

wj ) |E(j) - E(i)|

Cij ) - 1 if
E(j) - E(i)
P(j) - P(i)

< 0

) + 1 if
E(j) - E(i)
P(j) - P(i)

> 0

) 0 if P(j) - P(i) ) 0

(2)
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where E(i) and P(i) are the experimental and predicted
binding free energies of compound i. The PI index ranges
from -1 to +1, depending on how well the predicted ranking
matches the experimental ordering. A value of +1 indicates
perfect predictions, a value of -1 indicates predictions that
are perfectly anticorrelated, and a value of 0 arises from
random results. In essence, the method considers each pair
of compounds i and j in turn. Large differences in binding
free energies have a large weight, wij, which provides a large
positive contribution to the final PI, if the rank-ordering of
the pair is correct. Conversely, if i and j have a small
difference in measured binding affinity, an incorrect predic-
tion of the most potent binder has a minor impact on the
final PI.

Results and Discussion

Approximate free energies of binding for the inhibitors were
obtained from the experimental pIC50 values.14 While the
relationship between Ki and ∆∆G is linear, the correlation
between IC50 and Ki is not exact; thus pIC50 and ∆∆G cannot
be expected to be perfectly linearly related.

The MC/FEP results using the default hydration protocol
are compared with the experimental data in Figure 2. The
overall RMSD is 2.65 kcal/mol, while the MUE is 1.69 kcal/
mol, and the PI is 0.41, representing modest predictive
power.14 Four of the ligands (8, 9, 10, and 17) were found
to bind most favorably in the “R4, R5” mode, while the rest
bound in the “R1, R2” mode. The most significant outliers
from these calculations were the 2-hydroxyl and 2-amino-
substituted ligands 14 and 15, which are capable of hydrogen
bonding to the carboxylate group of Asp168. No obvious
features stand out for the errors for the remaining ligands.
An inspection of snapshots from the calculations, however,
revealed substantial inconsistencies between different ligands
in the number and positioning of water molecules within the
binding site.

For instance, as illustrated in Figure 3, two water
molecules were placed in the phenyl substituent pocket for
the meta-fluoro analog 7, but they were absent for the meta-
chloro analog 10. One water molecule is in a fairly
hydrophobic environment and can donate only a single

hydrogen bond to the backbone carbonyl of Val105. Thus,
though there is sufficient space to insert a water molecule in
this region of the binding site when 7 is bound, it is unclear
whether this would be thermodynamically favorable. The
other water molecule is involved in strong hydrogen bonding
interactions with Lys53 and Asp168, and it is doubtful that
it should be absent when 10 is bound.

Clarification of the water distributions in the binding site
was sought using the water placement algorithm JAWS for
each ligand. These calculations revealed the presence of
several hydration sites within the binding pocket that were
inconsistently found when the stored solvent box was used.
To test whether consistency in solvent distribution alone was
sufficient to improve accuracy, the MC/FEP calculations
were repeated starting with the solvent distribution computed
using the JAWS protocol for the complex of 1 for all
complexes. This resulted in only marginal improvement over
the original results, with an RMSD of 2.52 kcal/mol, a MUE
of 1.95 kcal/mol, and a PI of 0.55 (see the Supporting
Information). While using the same initial solvent distribution
eliminated errors resulting from varying numbers of water
molecules, occasional large errors were introduced in in-
stances where the water distribution derived for the smallest
analog (1) was used for simulations of much larger analogs,
for example, the 3,4-dimethyl one (6). In these cases, some
water molecules were observed to be trapped in high-energy
configurations between the protein and ligand. The extensive
sampling of ligand, protein, and solvent degrees of freedom
required to resolve such steric problems is not systematically
achieved with the standard MC simulation protocol.

To eliminate this source of error, the MC/FEP calculations
were repeated with the JAWS-derived water distributions for
each starting ligand state. This resulted in much improved
accuracy, with the errors roughly halved. For 10 M con-
figurations of averaging, the RMSD for all ligands is reduced
to 1.35 kcal/mol, the MUE to 0.95 kcal/mol, and the PI
improved to 0.62 (Figure 4). These results changed little upon
extension of the averaging period to 20 M configurations;

Figure 2. Calculated vs experimental relative free energies
of binding for the p38 inhibitors using the conventional protocol
with the stored water box. Free energy differences (kcal/mol)
are relative to inhibitor 1. Open circles indicate the computed
relative free energy of binding for ligands 13, 14, and 15, which
are discussed in the main text.

Figure 3. Hydration sites in the vicinity of the p38 inhibitor 7
(colored sticks) obtained using the default hydration protocol.
These hydration sites are not observed for inhibitor 10 (purple
sticks). Ligand and Asp168 atoms are drawn in thicker sticks.
Other water molecules, selected protein residues, and all
protein hydrogen atoms have been omitted for clarity. Hydro-
gen bonding interactions between protein atoms and water
molecules are depicted by dotted red lines.
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the RMSD, MUE, and PI became 1.44, 0.92, and 0.61
(Supporting Information). Only ligand 17 was found to prefer
binding in the “R4, R5” pose, which is observed in the 3FC1
crystal structure.15 However, the relative free energies of
binding for ligand 5 in both poses were the same within 0.2
kcal/mol; thus, it does not have a preference. The “R1, R2”
pose is calculated to be significantly more favorable for the
remaining unsymmetrical ligands.

A detailed analysis of the output of the MC/FEP simula-
tions was undertaken to elucidate the improvements in
binding affinity predictions using the JAWS-derived water
distributions. An analysis of the hydrogen-bonding ligands
14 and 15, which were previously predicted to bind overly
favorably, revealed that the JAWS calculations located two
additional hydration sites in the vicinity of Asp168, as
illustrated in Figure 5 (bottom) for the hydroxyl analog 14.
These hydration sites are located in a cavity partially shielded
from bulk solvent and were not populated using the default
solvation protocol (Figure 5, top). The first water molecule
receives two hydrogen bonds from the ligand’s hydroxyl
group and Lys53 and donates two hydrogen bonds to the
other water molecule and Asp168. The second water
molecule also donates two hydrogen bonds to Glu71 and
the backbone carbonyl of Phe169. The occupancy of the
additional hydration sites can be expected to affect the
outcome of the FEP calculations. In the MC/FEP simulations
equilibrated following the default solvent-box protocol, the
hydroxyl group of 14 is donating a hydrogen bond to Asp168
(Figure 5, top). In the MC/FEP simulations equilibrated after
the JAWS setup, the carboxylate group of Asp168 ends up
rotated away from its initial position to accommodate better
the additional water molecules. The interaction between the
hydroxyl group and Asp168 is no longer direct, but it is
water-mediated. Consequently, the addition of the meta
hydroxyl or amino group onto the phenyl ring is less
favorable, in agreement with the experimental activity
measurements. Specifically, the relative binding affinity of
14 was computed in two steps, 14f18 and 18f1. Compared
with the original simulations, the relative free energy of
binding of 14f18 is 3.3 kcal/mol less favorable for 14, and
the relative free energy of binding of 18f1 is 3.5 kcal/mol
less favorable for 18 with the JAWS setup. Overall, the error
in the computed free energy of binding for 14 is reduced

from 8.2 to 1.4 kcal/mol. Similarly, the relative binding
affinity of 15 was computed in two steps, 15f2 and 2f1.
Compared with the original simulations, the relative free
energy of binding of 15f2 is 5.5 kcal/mol less favorable
for 15, and the relative free energy of binding of 2f1 is 1.1
kcal/mol more favorable for 1. Overall, the error in the
computed free energies of binding for 15 is reduced from
4.2 to 0.2 kcal/mol.

The most significant remaining error is for the 2,4-dimethyl
compound 13, whose relative binding affinity is too unfavor-
able by 4.2 kcal/mol with the JAWS simulation protocol,
whereas the initial simulations yielded an error of only 0.4
kcal/mol. The relative binding free energy of 13 was
computed in two steps, 13f3 and 3f1. The small error for
13 using the traditional solvent-box protocol is fortuitous
because it represents a cancellation of errors for the two steps,
+1.9 and -2.3 kcal/mol, respectively. With the JAWS
protocol, the corresponding errors are +5.0 and -0.8 kcal/
mol, so the problem was predominantly in the 13f3 step.
One possibility is that the starting water distribution for 13
was not appropriate for or did not evolve properly for 3. As
pointed out previously, substantial errors can be expected if

Figure 4. Calculated vs experimental relative free energies
of binding for the p38 inhibitors using the JAWS protocol to
determine initial water coordinates. Details are the same as
in Figure 2. To aid in comparison with Figure 2, the axis scales
and data symbols are the same.

Figure 5. Representative snapshots from MC/FEP simula-
tions for inhibitor 14. Top: The solvent distribution that
originated from the default procedure. Bottom: The solvent
distribution obtained after equilibration using JAWS. Ligand
and Asp168 atoms are drawn in thicker sticks. Hydrogen
bonding interactions between the ligand hydroxyl group or
buried water molecules are depicted by dotted red lines.
Solvent exposed water molecules solvating Asp168 are shown
in green sticks. Other water molecules, selected protein
residues, and all protein hydrogen atoms have been omitted
for clarity.

3854 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Luccarelli et al.



a perturbation induces changes in hydration in the binding
site, unless the computed relative free energies of binding
are corrected by computing the absolute free energy of
binding of the displaced water molecules.6 However, this
situation does not seem to occur in the present case since
the JAWS-computed hydration patterns for the starting and
ending states, 13 and 3, are identical.

The problem with the 13f3 perturbation appears to be
more complex and associated with the conformation of the
Asp168 side chain. From the free energy changes for the
individual FEP windows, it is apparent that the ca. 3 kcal/
mol difference in free energy changes between the two
simulations arises at the beginning of the perturbation, when
the 2-methyl group of 13 starts to be shrunk into a hydrogen
atom (see the Supporting Information). A visualization of
snapshots saved during the simulations with the traditional
hydration protocol reveals that the carboxylate group of
Asp168, which was initially pointed toward the ligand, rotates
away from the 2-methyl group (Figure 6, top). This did not
occur in the JAWS equilibrated simulations, presumably
because rotation of the carboxylate group would break the
hydrogen bond with one of the two nearby water molecules
placed using JAWS (Figure 6, bottom). The MC/FEP
calculations were repeated using the same JAWS-derived
solvent distribution, but with Asp168 rotated to adopt the
conformation observed with the solvent-box protocol. The
computed change in free energy of binding for 13f3 became

-2.0 ( 0.2 kcal/mol, which is intermediate between the
results obtained with the solvent box and JAWS protocols.
In turn, this reduces the error for 13f1 to 2.5 kcal/mol. Thus,
the conformations of Asp168, which is part of the flexible
DFG motif, are likely not adequately sampled in the present
MC/FEP simulations. This highlights complexities associated
with the fact that hydration of the system and the conforma-
tion of the ligand and protein are all coupled. The hydration
may be set up properly for one conformation, but it is
possible that the system relaxes away from this conformation
to one that would prefer a different population of water
molecules that cannot be achieved with computationally
reasonable sampling periods.

Finally, it is worth reflecting on the degree of agreement
that can actually be achieved between the computations and
the experiment, given the uncertainties in the measured
activity data. As noted previously, the conversion of ∆IC50s
into ∆∆G’s of binding is approximate, but another source
of error is the variability of the IC50 measurements them-
selves. Although uncertainties were not reported for the
experimental data used here,14,15 a study of a large corporate
database found a median standard deviation for activity
measurements of approximately 0.3 log unit.29 This corre-
sponds to a factor of 2 in IC50 or (0.41 kcal/mol. Our own
experiences with repeated measurements for compounds used
as standards in multiple biological assays are similar.2,21,28

Drawing samples from a Gaussian distribution centered
around the reported IC50’s for each ligand according to this
standard deviation, the predictive index (eq 2) can be
computed between two independent simulated activity
measurements for the entire data set. Following a procedure
similar to the one reported by Brown et al.,29 the sensitivity
of the PI to uncertainties in the measured IC50’s is derived
by repeating the calculation 1 million times. Assuming the
above-mentioned errors, the median achievable PI is 0.76
for this data set. Though the distribution of PI values is not
Gaussian (see the Supporting Information), approximately
67% of PI measurements would fall within the range
0.67-0.84. The median achievable PI for this data set is thus
below unity because the error bars on the measured IC50’s
are large enough to qualitatively change the rankings of some
of the ligands. Given these considerations, the improvement
of the PI from 0.41 to 0.62 upon using a JAWS-optimized
water distribution for the MC/FEP simulations is reinforced
as being significant. The PI of 0.62 is also greater than the
PI achieved for this data set by various scoring function and
MM-PBSA approaches that were previously tested.14,15 The
only higher PI, an impressive 0.85, was achieved using
thermodynamic integration and molecular dynamics with the
Amber program.14

Conclusion

The results presented here illustrate that the initial placement
of water molecules can significantly affect the outcome of
computations of protein-ligand binding affinities. Details
such as this need to be considered to allow current
computational methods to evolve to the accuracy required
for routine, reliable guidance of lead-optimization programs
in drug discovery and of molecular design in general. It was

Figure 6. Representative snapshots from MC/FEP simula-
tions of inhibitor 13 bound to p38R MAP kinase. Top: The
configuration near Asp168 that arose in the simulation starting
from the default hydration procedure. Bottom: The configu-
ration near Asp168 after equilibration using JAWS. Ligand and
Asp168 atoms are drawn in thicker sticks.
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found that optimization of the distribution of water molecules
in the protein-ligand binding site using the water placement
algorithm JAWS substantially improved the quality of
subsequent MC/FEP results for a data set of 17 inhibitors of
p38R MAP kinase. Use of the JAWS-derived water distribu-
tions reduced the RMSD for relative free energies of binding
from 2.65 to 1.35 kcal/mol and improved the predictive index
(eq 2) from 0.41 to 0.62. Though further optimization of
JAWS and other water-placement procedures is possible,12,13

additional issues affecting the outcome of free-energy
calculations also continue to warrant concerted attention.1-3

Force-field and sampling problems remain, and it is some-
times necessary to consider more complex perturbation cycles
where binding-site water molecules must be forced to
disappear.6,8-10 As pointed out here in the context of Figure
6, the complexity of sampling issues can be great, as it
simultaneously involves all components of the modeled
systems. Initial choices for the placement of water molecules,
every dihedral angle in the ligand and the protein, and the
protonation state of each ionizable residue can all have
ramifications that are not removed by standard sampling
procedures. Nevertheless, the present results have demon-
strated that significant gains in accuracy can be realized by
more thorough consideration of initial water placement in
calculations of the free energetics of protein-ligand binding.
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